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Abstract 
The advent of 3D-periodic dielectric structures possessing photonic band 

gaps (PBGs) and the ability to incorporate defects in the structure, wherein 
localized high-Q modes are formed at PBG frequencies, should offer far greater 
control over (i) the spatial modulation of the field amplitude, and (ii) the spec- 
tral distribution of its mode density. We have been exploring the following 
novel quantum optical processes which rely on the "design" of the afore- 
mentioned field characteristics in PBG structures: (a) Quantum states via 
nonadiabatic periodic transitions: Unusual nonadiabatic dynamics of field- 
dressed atomic states is obtained for atoms moving along a near-resonant 
periodically-modulated field mode. Such dynamics, followed by measure- 
ment of the atomic excitation, permits an extremely powerful control over 
the photon-number and phase distributions of the field, (b) Pump-mode 
Fock-state generation: Atomic states dressed by the defect field can decay 
via coupling to the mode continuum into a state, which upon measurement 
of the atomic state, corresponds to a single Fock state of the field, (cl) Los- 
ing without inversion - atomic coherence by spontaneous decay: Spontaneous 
decay of an atom whose resonance is located between two PBGs is found to 
produce coherence between adjacent atomic sublevels. This coherence can 
be used to generate electromagnetically-induced transparency, lasing without 
inversion and nonclassical light. (c2) Two-atom interactions and coherence: 
We predict drastic suppression or enhancement of the resonant excitation 
transfer and the cooperative frequency shift in systems of two identical atoms 
placed within PBG structures, both at near-zone and far-zone inter-atom 
separations. These effects stem from the competition of PBG-induced single- 
atom spectral shifts and the inter-atom resonant dipole-dipole interaction. 
The resulting two-atom stable correlated states can be used for lasing with- 
out inversion, (d) Near-resonant gap solitons and optical "excitons": We 
demonstrate that pulse transmission through near-resonant media embedded 
in ID-periodic dielectric structures can yield a novel type of gap solitons, 
which allows for near-resonant self-induced transparency at PBG frequen- 
cies. At the QED level, we predict the existence of multiphoton bound states, 
which are the optical analogs of multi-excitons at PBGs of nonlinear periodic 
structures. 

Keywords:  Photonic band structures, quantum optics, quantum state preparation, lasing 
without inversion, cooperative (collective) effects, coherence effects, gap solitons. V 
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I. QUANTUM FIELD STATES VIA NON-ADIABATIC TRANSITIONS 

A. Background 

PBG structures are expected to allow better control over one of the basic properties 
that determine the field-atom interaction, i.e., the spatial volume and shape of narrow- 
lmewidth (high-Q) modes. Many of the investigated structures are composed of void spaces 
periodically alternating with dielectric material. Atomic beams collimated to a micron- 
size waist can therefore pass through void channels in structures possessing PBGs at near- 
infrared wavelengths. The resulting field-atom interactions are expected to extend the scope 
of QED processes realizable in the regime of a single high-Q mode near resonance with 
atomic transition, reversible energy exchange is obtainable between the atom and field. In 
the simple case of an atom traveling in a spatially uniform high-Q mode, this exchange 
is described by the fundamental Jaynes-Cummings model (JCM) [1,2]. Atomic motion 
through a periodically modulated high-Q mode, in a Fabry-Perot resonator or a defect at a 
PBG frequency, has been predicted to drastically modify the resonant JCM dynamics, and. 
as shown by us, allow better control over the generation of sub-Poissonian photon statistics 
in such a mode [3]. In the present study, we have posed the question: can photon statistics 
and other nonclassical properties of the field be better controlled by near-resonant periodic 
modulation of the field-atom coupling? 

B. Results 

A novel mechanism for generating nonclassical field states has been discovered (item 6 - 
Sec.V). based on non-adiabatic periodic modulation of the parameters governing the field- 
atom coupling. This mechanism has been investigated in the context of a two-level atom 
moving along a spatially-periodic near-resonant field mode in a PBG structure, resulting in 
temporal periodicity of the Rabi frequency. We have shown that steady growth with number 
of periods is possible for the field-dressed atomic transition probability. Such steady growth 
(parametric amplification) is obtained whenever the probability amplitudes in a single period 
interfere constructively, which corresponds to the adiabatic modulation phase in each period 
being an integer multiple of x. 

An advantageous property of such system is the possibility of selective generation of spe- 
cific nonclassical states of the field: (a) For an atom interacting with a spatially sinusoidal 
quantized field, the possibility of strong enhancement of the transition probability (by con- 
structive interference at many nodes of the field) is very sensitive to the number of photons 
in the quantized field. Hence, the transition amplitudes may interfere constructively only 
for certain photon-number states. Thus a successful measurement of the atomic excitation 
results in nearly a Fock state of the field, if only one photon number satisfies the construc- 
tive interference condition for the transition. The regime in which several number states 
are singled out from the initial distribution by the constructive interference and the atomic- 
excitation measurement results in the generation of amplitude or phase squeezed states, (b) 
The periodic modulation of the field-atom detuning controlled by sufficiently many param- 
eters gives us the possibility to generate an arbitrary preselected superposition of photonic 



number states (quantum state engineering). The number of components in the preselected 
superposition is determined by the number of control parameters (Appendix A). 

II.   PUMP-MODE FOCK-STATE GENERATION BY RESONANCE 
FLUORESCENCE IN PHOTONIC BAND STRUCTURES 

A. Background 

Resonance fluorescence (RF) is the emission or scattering of photons into a mode contin- 
uum by a two-level atom which is driven by a near-resonant single-mode field [4]. This has 
been one of the most extensively studied processes in quantum optics, through which several 
fundamental features of field-atom interaction have been revealed, such as the Mollow triplet 
spectrum [5] and nonclassical field correlations, manifested by antibunching [6], quadrature 
squeezing [7] and sub-Poissonian photon statistics [8]. More recently, the interest in RF has 
shifted to its modifications, taking place when the mode continuum, into which the driven 
atom radiates,differs from ordinary free-space vacuum. Thus, a squeezed "vacuum" contin- 
uum, in which one field quadrature of pairwise-correlated modes exhibits reduced quantum 
fluctuations, has first been shown to affect spontaneous decay [9], and subsequently has been 
demonstrated to modify the Mollow-triplet peaks, depending on the squeezing bandwidth 
("coloring" of fluctuations) and the phase between the squeezed vacuum and coherent driv- 
ing fields [10]. Analogous modifications of RF have been revealed in resonator structures 
with "coloring" of the continuum mode density [11]. These modifications are expected to be 
especially dramatic in periodic dielectric structures that exhibit photonic band gaps (PBGs), 
i.e., forbidden spectral bands at all emission angles [12]. For a nearly-classical non-depleted 
driving field, the inhibition of one of the Mollow triplet spectral sidebands by a PBG has 
been shown to inhibit the other sideband, thereby causng the disappearance of antibunching 
[11]. The latter phenomenon has been analyzed using the common assumption of locally- 
Markovian response of the mode continuum. On the other hand, studies of spontaneous 
decay into strongly colored continua [13] indicate that non-Markovian features may become 
prominent near an abrupt, nonanalytic cutoff of the continuum, in a resonator or a periodic 
dielectric structure. One such feature is the formation of a non-decaying photon-dressed 

atomic state in the forbidden band [14-16]. 

B. Results 

In recent months [17] (Item 1 - Sec.V) we have studied the dynamical effect of RF on the 
photon statistics and correlations of the driving field, which undergoes depletion via dressed- 
state decay near abrupt PBG edges. The most striking outcome of this process is that an 
initially broad (Poissonian or thermal) photon-number distribution of the driving field can 
become highly sub-Poissonian, with a narrow peak about a single Fock state, following a 
measurement of the atomic excitation. The realization of such distributions may therefore 
be a major stepping stone towards the construction of novel quantum light sources, including 
photon-number states. We also show that the dressed-state non-diagonal matrix elements 
yield, upon measuring the atomic state, coherences between Fock states of the field. Hence, 



the two predominant "attractor" states, say, \n0) and \n0 - 1), whenever the defect mode 
is shifted from the PBG center, will be partly correlated, if an initial coherence exists either 
in the atom or in the field. Therefore deviations from phase randomness of the field are 
anticipated. 

Another striking effect of the stable (non-decaying) dressed-state coherences is the ap- 
pearance of beats (oscillations) of Fock-state populations of the field prepared by measuring 
the final atomic state. These oscillations will be strongly pronounced in the case when the 
initial photon distribution spans many PBGs in the spectral density of modes (DOM). In 
this case the field distribution will consist of many partly-correlated Fock states [17]. 

III. LASING WITHOUT INVERSION: 

III.l Single-Atom Systems 

A. Background 

If the lower state of the resonant atomic transition consists of two sublevels \g) and \g') 
a A-configuration), then the atomic state coherence p°ggl can be used in a scheme of lasing 
without inversion(LWI) between the \g) - \g') doublet and a higher atomic level \u). It has 
been long known that, if the single-photon Rabi frequency of a cavity mode, fix, is much 
larger than its linewidth Yu then the dressed atomic state will be split after time ~ LO{

1 

into a nearly-equal superposition of two dressed states whose energies ui and LU2 are pushed 
in opposite directions from the cavity-mode peak by roughly ±ü1/2. We have posed the 
question: can we base LWI schemes on similar, spontaneously induced coherence in PBG 
structures? (Item 7 - Sec.V). 

B. Results: Spontaneous Coherence Formation in PBG Structures 

Assume that the transition between a ground \g) and an excited |e) levels of the atom 
is near resonant with a narrow photonic band. The band is assumed to be well separated 
from other bands, so that the influence of the latter can be neglected. Moreover, the band 
is assumed to be sufficiently dense and narrow, i.e., 

Gm > A6,  |Am|, (1) 

where Gm and A& are the maximum value and the width of the function G(u>) characterizing 
the stregth of the atom-band coupling, Am = ua - wm, um is the center of gravity of the 
band, 

1     fwL 
um = — /     duuG(u), (2) 

uu and U>L are the lower and upper band edges respectively, and 

A=  rL duG(u). (3) 



Then the level e can be shown [16] to split to two levels 1 and 2, whose separation to first 
approximation is 

E2-E1=hy/4A + &2
m = hnR, (4) 

where OR is the vacuum Rabi frequency. An excited atom injected at t — 0 into the PBS 
in the case (1) undergoes an insignificantly small spontaneous decay over a time of order 
l/f2fl, after which the excited-state wavefunction becomes a coherent superposition of the 

states l^i) and \ip2) [16], 

|tf (*)) = v/^i)e-^ + VWe-*"2', (5) 

where UJ = Ej/h. If there is a nonzero matrix element of the dipole moment, d,3e, for the 
transition between the level e and another level 3, then the dipole moment matrix elements 
for the transitions 1-3 and 2-3 are given by 

^31 = A/CT^3I,      d32 = y/c^dze- (6) 

For the near-resonant case, A^ <C 4A, which is of special interest here, one gets in the first 
approximation 

•   1 UJa+UJr, 
C\  = C2  =  -, U>ii2 = TVÄ. 

2'        L" 2 

The density matrix elements of the system consisiting of the levels 1 and 2 are [cf. Eqs. (5) 
and (7)] 

-^ e2iVÄi 

Pn(t) = pn(t) = -,       pu(t) = p*21(t) = -r-. (8) 

C. Results: Lasing Without Inversion 

The coherence between the levels 1 and 2 can be utilized to produce lasing without 
inversion [18]. Following Refs. [19-21], consider a A-system. The field 

E{t) = E0e~tujt + c.c. (9) 

couples the upper level 3 with the lower levels 1 and 2. The levels 1, 2, and 3 have have 
the reciprocal lifetimes respectively 7l5 72, and 73 = 731 + 732 + 73, where 731, 732, and 73 

are the spontaneous rates of transitions from the level 3 to the levels 1, 2, and all others 
respectively, whereas the reciprocal lifetimes of the coherences p^ and pis are 721 and 731 
respectively. The levels 1 and 2 can have finite lifetimes due to one or several of the following 
factors: spontaneous transitions to levels other than the ground state, finite time of presence 
of the atom in the structure, finite density of modes outside the narrow band (which causes 
the splitting of the level e), and collision-induced transitions. The open 3-level sysytem is 
described here by an unnormalized density matrix R(t), whose diagonal elements yield the 
number of atoms in the laser cavity in the respective level. 

Our results show that a spontaneously-formed coherent superposition of the states 1 
and 2 allows only a very small fraction of atoms in these states to absorb the field E(t). 
Therefore there can be gain whenever the number of the atoms at the level 3 is much less 
than the number of the atoms at the lower levels 1 and"2 and CJ12 ~> 721,731 (Appendix B). 



III.2 Two-Atom Effects 

A. Background 

Studies of cooperative atomic effects in resonantors have been extensions of the Tavis- 
Cummings model [22]. This model assumes many atoms identically coupled to a single mode 
and ignores the symmetry-breaking dipole-dipole effects, which are important at near-zone 
separations [23,24]. 

Our study is aimed at gaining new insight into cooperative effects: a pair of identi- 
cal two-level atoms (or excitons), sharing a photon with one or many high-Q modes in a 
photonic-band structure or resonator. Such effects may be important for the spontaneous 
formation of coherence in two-atom systems and its utilization for lasing without inversion 
(see above). We have developed a formalism capable of treating two atoms coupled to a field 
with an arbitrary mode-density spectrum in a non-perturbative fashion. Such a formalism is 
necessary because the standard perturbative treatment of two-atom coupling, to second or- 
der in the field [25], is inadequate for a reservoir whose mode-density spectrum does not vary 
smoothly, as demonstrated already by our comprehensive theory of a single atom coupled 
to such a reservoir [16]. 

B. Results 

Our treatment (Item 4 Sec.V) demonstrates that two identical atoms interacting via 
a near-resonant narrow-linewidth mode (or degenerate band) and an off-resonant reservoir 
can exhibit a much richer variety of spectral and dynamical features than what is currently 
known. It must be viewed as a system of three mutually coupled excited states (as opposed 
to two such states in previously studied models [25,22]). The dipole-dipole (RDDI) coupling 
and the mode-induced Rabi splitting are inseparable in this system. The interatom coupling 
results from mixing of all three states, which is most striking for separations where the two 
predominantly-populated levels nearly cross. Then the competing RDDI and Rabi splittings 
cause strong interference of the symmetric and antisymmetric two-atom excited states, lead- 
ing to decoupling of single-atom excited states. This occurs at near-zone (quasimolecular) 
separations (as small as 10_2A/1) and corresponds to suppression of interatom excitation 
transfer, compared to the electrostatic near-zone limit of RDDI. 

The present predictions, particularly the suppression of excitation transfer at quasimolec- 
ular separations, may be important in various systems of two atoms, molecules, or excitons 
within high-Q Bragg resonators (Appendix C). 



IV. PROPAGATION EFFECTS 

IV.1 Self-Induced Transparency in Photonic Band Structures: Gap Solitons Near 
Absorption Resonances 

A. Background 

Pulse propagation in a non-uniform resonant medium, e.g., a periodic array of resonant 
films, can destroy self-induced transparency (SIT) [26,27], because the pulse area is then 
split between the forward and backward (reflected) coupled waves, and is no longer conserved 
[28,29]. Should we then anticipate severely hampered transmission through a medium whose 
resonance lies in a reflective spectral domain (photonic band gap) of a periodically-layered 
structure (a Bragg reflector)? We have shown analytically [30] (Item 2 - Sec.V) that it is 
possible for the pulse to overcome the band-gap reflection and produce SIT in a near-resonant 
medium embedded in a Bragg reflector. The predicted SIT propagation is a principally new 
type of a gap soliton, which does not obey any of the familiar soliton equations, such as the 
non-linear Schrödinger equation (NLSE) or the sine-Gordon equation. Its spatio-temporal 
form and intensity dependence are shown here to be distinct from the extensively - studied 
gap solitons in Kerr-non-linear Bragg reflectors, which are described by the NLSE. 

B. Results 

In treatments of bidirectional field propagation in media with arbitrary spatial distribu- 
tion of near-resonant atoms [31,32], the Bloch equations for the population inversion and 
polarization are entangled in a fashion which leads to an infinite hierarchy of equations for 
successive spatial harmonics. Here we avoid this complication by confining the near-resonant 
two-level systems (TLS) to layers much thinner than the resonant wavelength, with the same 

periodicity as the dielectric structure. 
Our main idea has been to try the following phase-modulated 27r-soliton SIT solution 

for the envelope of the forward (F) and backward (B) field 

EFm = JL. {t ± i) A0
extrr /;'.:." "V do) 1\      exp [i(an0z/cTc - At)} 

2{iTc V ~l~ u)    °   cosh [ß(z/rccu - t)] 

where p. is the transition dipole moment, rc is the cooperative (resonant) absorption time, 
A0 is the amplitude of the solitary pulse, u is the velocity (normalized to c), nQ is the mean 
refractive index and A is the field detuning from the gap center. 

We focus here on the most illustrative case, when the TLS resonance is exactly at the 
center of the optical gap. Then the phase modulation a, the pulse inverse-width ß = A0/2 
and the detuning A are analytically obtainable as a function of the group velocity cu. We 
find that the condition for SIT is that the cooperative absorption length CTc/n0 should be 
shorter than the reflection (attenuation) length at the gap l//c, i.e., that the incident light 
should be absorbed by the TLS before it is reflected by the Bragg structure. SIT is found to 
exist only on one side of the band-gap center, depending on whether the TLS are embedded 
in the region of higher or lower linear refractive index in the Bragg structure. This result 
may be understood as the addition of a near-resonant non-linear refractive index to the 



modulated index of refraction of the Bragg structure. When this addition compensates the 
linear modulation, then there is no band gap and soliton propagation is possible. The soliton 
amplitude dependence on frequency detuning from the gap center (which coincides with 
the TLS resonance) is shown The parameters obtained from our analytical solutions fully 
agree with those which yield both forward and backward soliton-like pulses in a numerical 
simulation of Maxwell-Bloch equations. 

An adequate system for experimental observation of this effect appears to be a periodic 
array of 12-nm-thick GaAs quantum wells (A = 806nm) separated by A/2 non-resonant 
Al-GaAs layers. Area density concentration a ~ 10s—109 cm-2 of the quantum-well excitons 
yields rc ~ 10~13-10"14s. A solitary pulse of < lps, i.e., much shorter then the dephasing 
time T2 ~ lOps (at 2°K) in this structure requires band-gap reflection length l//c > 100 A. 

The salient advantage of the predicted near-resonant gap soliton is stability with respect 
to absorption. By contrast, strong absorption is a severe problem associated with a large 
Kerr coefficient required for NLSE gap solitons (Appendix D). 

IV.2 Theory of Quantum Gap Solitons 

A. Background 

By nature any dielectric material is nonlinear. The nonlinearity changes the PBG prop- 
erties of periodic structures to some degree. In one-dimensional (ID) photonic crystals, 
even weak nonlinearity acts as a large perturbation on these properties. In recent years it 
has been shown that ID Kerr-nonlinear photonic crystals admit band-gap solitary waves, 
which are called gap solitons. Current studies correspond to classical gap solitons. Since 
quantum many-body properties of light can be important in nonlinear optical processes, we 
have developed the quantum theory of gap solitons in a ID Kerr-nonlinear photonic crystal 
(Item 5 - Sec.V). 

B. Results 

The basic idea is that incident photons with frequencies in a band gap are scattered 
by the nonlinearity into the conduction and valence bands of the photonic crystal. The 
effective Hamiltonian of quantum gap solitons is derived in the two-band effective-mass 
approximation. The eigenstates of the Hamiltonian are constructed exactly by Bethe's 
ansatz method. We find that in a certain band gap of the photonic crystal quantum gap 
solitons can be in bound states, consisting of one or more photon pairs from the valence and 
conduction bands. Such bound-state quantum gap solitons are optical analogs of exciton 
molecules. Here we give the 2JV-body bound-state wave function in the unnormalized form 

tf(z1±,..., zN±) oc exp (f: iK
m-*>--m+*i+\ (n) 

N 
X exp(-E 

m.-.m+Vi 

fr[ (m_ - m+)h 2 !^J+      ~]-\ 



- -TT }^\m-\z3- ~ z'-l + m+\zJ+ ~ *l+ 

The exponential factors in the bound state |$2iv > can be revealed by the dependence of 
the intensity-intensity correlation function G^2' on the separation rj of two photon counters 
detecting the field in the structure: 

GW(ri) = j < $2N\£
+
(Z)E-(Z)£+(Z + rj)E-{z + V)\$2N > dz (12) 

where the operator S~(z) = <f>+(z) + 4>-(z) is the position-dependent negative-frequency 
field envelope. The 2iV-body bound-state energy eigenvalues are found to have the following 
form, 

E2N = 2Nh{u0±U2N) (13) 

2hU2N = r + -2 TT! (^     ~ 1) I14) 
z|m_ — m+\      2|7TZ_ — m+\n on 

where c^o = (LO+ + w_)/2 is the center of the band gap and the upper (lower) sign is chosen 
according to that of the Kerr nonlinearity. As seen from these equations, bound states are 
associated with discrete transmission lines at Q2.v = ^o ± <^2iv in the band gap. 

As a realistic example, we consider a periodic structure of alternating layers of GaAs 
crystal and linear dielectic. The layer thicknesses are ai(GaAs) = 0.2338 fiva and a2 = 0.3044 
/.im. The refractive index of GaAs crystal is n\ = 3.60 and the refractive index n2 of linear 
dielectric varies from 1.00 to 3.574. GaAs crystal is a self-defocusing medium and has a 
high nonlinear susceptibility X\ = —2.5482 x 10~10 (cm/V)2 for light frequencies below the 
bandgap Eg — 2.1573 x 1015 s_1. The calculation reveals that in the second lowest band 
gap of this structure quantum gap solitons can be in bound states. The numerical results 
reproduce the multi-exponential fall-off of the intensity-intensity correlation function G^(r]) 
with the detector separation rj and the variation of the optical exciton frequency 02iv with 
the relative refractive index ni/n2, for different quantum numbers N. 

In conclusion, bound-state quantum gap solitons will manifest themselves via distinct 
dependence of the intensity-intensity correlation function on the detector separation and via 
transmission resonances at band-gap frequencies (Appendix E). 

IV.3 Superluminal Delays of Coherent Pulses in PBG structures 

A. Introduction 

As shown by a two-photon interference experiment [33], a photon that has tunneled as 
an evanescent wavepacket through a PBG structure (dielectric-mirror) appears to have been 
delayed significantly less than its "twin" photon that has traversed the same distance in 
vacuum. Such a delay has been interpreted as signifying "superluminal" (faster-than-light) 
barrier-traversal time. Similar "superluminal" time delay in tunneling through a dielectric 
mirror has now been measured in a classical two-pulse interference experiment [34]. The 
latter experiment has also revealed a remarkable feature, namely, that the temporal width 
of the transmitted wavepacket is strongly narrowed down. 

-      - 9  • - - - 



It is always possible to trace numerically the evanescent wavepacket evolution and com- 
pare its features with different definitions of barrier traversal times [35-40] (see below). 
Nevertheless, the mechanism of superluminal time delays is still obscure [33] and regarded 
as a "poorly resolved mystery" [40]. A commonly invoked notion is that this mechanism is 
spectral reshaping (filtering) of the transmitted wavepacket by dispersion. Yet why should 
spectral reshaping necessarily yield superluminal delays of EM pulses in non-absorbing struc- 
tures, after propagating in (dispersionless) vacuum? Is there a common mechanism for 
superluminal time delays and wavepacket narrowing, which applies to both EM pulses in 
dielectric structures and relativistic massive particles in potential barriers [40]? How is 
causality compatible with superluminal transmission, particularly in the single-photon case 
[33]? 

We purport to show (Item 3 - Sec.V) that the above questions can only be answered by 
a universal description of the temporal wavepacket transmission as interference between its 
causally-propagating consecutive components. Our description reveals, for the first time, the 
key role of phase coherence in tunneling, by demonstrating its dependence on the coherence 
time (phase randomization) of the wavepacket. An important corrolary is that superluminal 
time delays can occur also in allowed propagation, namely, propagation which can only be 
described by real wavevectors (e.g., in Fabry-Perot structures) and not only in evanescent- 
wave tunneling, where complex wavevectors can be employed (e.g., in photonic band-gap 
structures). 

B. Results 

Our theory has demonstrated, for the first time, that the universal mechanism of predomi- 
nantly destructive interference between accessible causal paths is responsible for transmission 
attenuation, superluminal delay times and wavepacket narrowing. Two other characteristics 
of evanescent waves ,namely, exponential attenuation and traversal-length independence of 
the mean traversal time of the structure length [34] can also be explained in terms of this 
universal mechanism. This theory overcomes the limitations of previous approaches, since 
it applies to arbitrary pulse shapes, widths and coherence times, and explicitly reveals the 
causal nature of their transmission. The understanding provided by this theory may open 
new perspectives in the design of the velocity, intensity and shape of transmitted pulses, by 
manipulating the phase delays along the accessible paths in the medium (Appendix F). 
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Appendix A: 
Non-Classical Field States via Periodically Non-Adiabatic 

transitions 

B. Sherman, G. Kurizki and A. Kozhekin 
V. Akulin* and A. Levine* 

Chemical Physics Department, Weizmann Institute of Science, Rehovot 16100 Israel 

A novel mechanism for generating nonclassical field states has been dis- 
covered, based on non-adiabatic periodic modulation of the parameters gov- 
erning the field-atom coupling. 

The resonant interaction of a quantized field with a two-level atom has been intensively 
studied in single-mode resonators where the atomic motion plays no role, since the field 
is taken to be spatially uniform in the beam direction. The field-atom interaction then 
conforms to the fundamental Jaynes-Cummings model [1,2] (JCM). 

Our purpose here is to show that atomic motion along a cavity mode can give rise to 
new QED effects that originate from the spatial character of the field. These effects can be 
revealed by propagating an atomic beam through a cavity along its axis or through a defect 
in a photonic crystal [3]. 

It has been shown that periodic temporal modulation of the resonant field-atom coupling 
for an atom moving along a standing-wave mode can drastically modify the prominent 
dynamical features of the JCM [1,2], such as (a) the evolution of "Schrödinger cats" and their 
photon statistics [4]; (b) the corresponding oscillations of the atomic population inversion 
[5]. Hear we show that near-resonant oscillatory modulation of the coupling in the same 
system gives rise to even more dramatic modifications of atomic and field dynamics. In 
addition to their inherent novelty and interest, these modified dynamical features are shown 
to allow much better control than their JCM counterparts over the generation of nonclassical 
field states. 

The system under consideration involves the classical translational motion of the atom, 
the internal atomic states, and the quantized EM field. The atomic internal states become 
strongly entangled with the quantized field state in the course of their interaction. The 
resulting combined field-atom system has eigenenergies and eigenstates ("dressed states"). 
The dressed-state energies depend on the field amplitude and therefore on the atomic lo- 
cation within the field mode. In the limit of slow atomic motion along a standing-wave 
field mode, the field-atom system adiabatically follows the dressed state associated with the 
instantaneous atomic position. However, the system can still undergo non-adiabatic transi- 
tions from one dressed state to another, with exponentially small probability. In this case, 
the kinetic energy of the classically-moving atom is transferred to the internal quantum 
degrees of freedom of the combined field-atom system. Such a non-adiabatic transition is 
very unlikely for sufficiently slow atoms, and therefore it occurs near the field nodes, where 
the energy required for such a transition is minimal (see Fig.l). Since the transition can 
occur at any of the nodes along the atomic path, the amplitudes of the transitions at dif- 
ferent nodes interfere. The phases of these interfering amplitudes are very sensitive to the 
number of photons in the quantized field. Hence, only for several photon-number states the 
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amplitudes may interfere constructively, significantly contributing to the" probability of the 
non-adiabatic transition. This implies that non-adiabatic transitions are strongly correlated 
with certain photon-number states. Therefore, a measurement that finds an atom-field sys- 
tem, which was initially prepared in the lower dressed state, in the upper dressed state (which 
almost coincides with the atomic ground state in the case of large detuning A = ua — w), 
projects the initial field distribution on these number states out. The final field statistics 
is the convolution of the initial one with the weights of different photon numbers in the 
non-adiabatic transition probability. 

The Hamiltonian for a two-level atom with dipole-transition frequency ua moving 
through the electromagnetic field of a spatially periodic mode with frequency u reads 

H = hua^ + huäfänn[f(t)}(&+a + a^). (i) 

Here <3"+(<T_) and a\a) are the atomic and field raising (lowering) operators, respectively, 
whereas the coupling strength ü(f) depends on the amplitude of the field mode £ at a given 
point 

nn[f(t)}  = (hLü/2)1/2 (ß ■ ex)£ (z = vt + f±) (2) 

. where ß is the atomic dipole moment and t\ is the mode polarization. 
We consider classical translational motion of an atom with the constant velocity v along 

the nodes of the mode in a structure of length I. We assume that the kinetic energy of the 
atom is much bigger than the energy of the non-adiabatic transition, such that the dispersion 
of the wave packet due to the velocity difference after and before the the transition are 
much smaller than the atom's size, that is hA/mv2 > Rat/l. This condition is satisfied, 
for example, for a cesium atom with velocities of W4cm/s and non-adiabatic transition 
frequency A of 107s-1 moving through a resonator with a length / of 1cm. 

For an atom moving in a sinusoidally periodic mode with period A the amplitude S{z) 
can be chosen to be real, here we can write 

tt[z(t)} = tt0sm(2irt/T), (3) 

with T = X/v. 

The Hamiltonian (1) has two adiabatic energy terms 

e±(t) = hu(n + 1) ± h^A2(t)/A + W{t)(n + 1). (4) 

In the limit of vanishingly small atomic velocity, the evolution of e^(t) is adiabatic, i.e., if ini- 
tially the atom was in the eigenstate with energy e~(0), then, after time i, the eigenstate ac- 
quires an adiabatic phase factor exp[—i f£ e~(t')dt'/H} Thermal velocity v of the off-resonant 
atom results in weak non-adiabaticity, if the Doppler frequency wD = 2ir/T = (2ir/\)v, is 
small in comparison with the atom-field detuning A = ua — u, A ^> curj. Non-adiabatic 
transitions are possible only in the vicinity of the points of the energies closest approach 
[6], namely, where fi(£) = 0 (see Fig.l). In order to find the probability amplitude of such 
a transition, one can in principle use the first order approximation in the non-adiabatic 
coupling [7]. However, since the result is exponentially small, the first order approximation 
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in the non-adiabatic coupling yields incorrect result [8].  A more precise expression for the 
amplitude of the transition an is derived by Dykhne [8]. 

an = exp Im IC dt^2+AÜ2{t)(n + l) (5) 

where tc is the branching point of the integrand (the points of levels crossing) in the complex 
time plane, that is closest to the Re t axis. 

In this approximation the non-adiabatic transitions are sudden jumps at the nodes of the 
standing wave. The phase difference for transitions at two adjacent transition space-points 

reads 

2<pn = J   dt^A2+in2(n + l) sin2 uDt, (6) 

and results in the following net amplitude of the non-adiabatic transition after K nodes the 

atom has passed 

A„ = e^fli^ = fl„^. (7) 
to smt?n 

Since the probability of the non-adiabatic transition is small, we neglect processes with more 
than one net jump (the next nonvanishing order of approximation would involve triple jumps 
— from the lower to the upper state, then down to the lower state and finally back to the 

upper state). 
We now consider the field evolution and assume that the atom has been initially prepared 

in its ground state \g), that is 

\i;(0)) = J2^\n + l)\g). (8) 
n 

The atom is taken to start and finish its motion at the nodes, where Q = 0 and the ground 
and excited states are the lower and upper dressed states, respectively. Hence, if after the 
interaction with the field the atom is found in the upper state, this means that the non- 
adiabatic transition has definitely happened. The field-atom final wavefunction, reduced by 
the conditional measurement of atomic excitation is 

m = KT)) = Nj2cnAnem"KT\n)\e), (9) 
n 

where N is the normalization factor. We see from (9) that the resulting field statistics is the 
convolution of the transmission function An and the initial photon distribution cn. This can 
result in selecting ("filtering") out either a single or several number state components, with 
the corresponding phases, thus generating a strongly non-classical state. We can adjust An 

over a wide range of possibilities via the following dimensionless parameters: TJ = A
2
/4HQ, 

£ = flo/ujD and the number of nodes of the standing wave K. The net amplitude An has 
narrow peaks corresponding to the constructive interference condition on the adiabatic phase 

difference (6). 

ipn = 7rm, m = 1,2,3.... _ (10) 
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Under this condition, the multichannel constructive interference'enhances the transition 
probability by K2. If only one photon number produces the peak, which contributes to the 
convolution (9) with the initial field distribution, then the final field state becomes nearly a 
Fock state (see Fig.2) after the conditional measurement of the atomic excitation. Thus a 
presecelected Fock-state is generated. 

Consider now the opposite case of wide range of n satisfying the constructive interference 
condition (10) and, therefore, contributing to the convolution (9). We assume that: (i) the 
adiabatic phase difference ipn ~ y/n, (ii) an do not vary strongly with n. This means that 
one gets the convolution of the initial filed statistics with the sine of y/n, which is typical to 
one-photon JCM [1,2]. As it was shown [9-11] for a field, initially prepared in a quasiclassical 
coherent state a conditional measurement leads to the formation of a macroscopic quantum 
superposition of two nearly-coherent states with identical mean amplitudes (same as the ini- 
tial one) and different mean phases ("Schrödinger cat"). The corresponding Q-function and 
the phase distribution F(</>), described in the Pegg-Barnett formalism [12] by the function 

E c{n)e ir 

are shown in Fig.3. 

The intermediate regime, when several number states are singled out from the initial 
distribution by the constructive interference and the conditional measurement (CM) of the 
atom in |e), results in the generation of amplitude squeezed states similar to the ones predicted 
by Yamamoto et al. for strong self-squeezing in Kerr media [13] ( see Fig.4). 

The weakly-nonadiabatic regime considered above imposes two major limitations on 
non-classical field-state preparation via constructive interference of nonadiabatic transitions 
followed by a CM of the atom: (i) the CM success probability is typically low (~ 1%); (ii) the 
resulting Fock-state amplitudes are controlled by very few parameters, which restricts the 
type of field state that can be prepared. In order to overcome these limitations, we adopt 
the model of temporal Kronig-Penney modulation, e.i. , periodically alternating abrupt 
jumps of the field detuning A or coupling constant (Fig.5). Then the nonadiabatic transition 
probability is large in every cycle of the modulation. This type of modulation can be achieved 
in photonic band structures [3], when the mode frequency is near the forbidden gap edge. 
Under the condition of constant atomic velocity, the atom-field coupling is modulated with 
period T = tF + tD, where tF is the duration of the zero-coupling stage (A > u>D, f]0), and 
tD is the duration of the 'dressed' evolution (A ~ O0). The 2x2 evolution matrix of the 
first stage is diagonal, it describes the free oscillations of atom+field states with appropriate 
energies 

ÜF(tF) = exp[-i(utfa + (u, - A)a3/2)tF] = e-™,&t' (exp(-»waiF/2) 0 

(12) 

The system evolution at the 'dressed' part of the cycle is described by 

ÜD^D) = exp{-i[oA + (u>- A)a3/2 + Ü0(a+ä + tfa_)]tD}. (13) 

The later expression can be written in the matrix form as follows 
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■ e-^atD/2^co8A/tD _ ^sin7tD) -ime-
iuJatD^smßtD 

27        ' u> ß 
UD{tD)-[      ■  _in^_eiUatD/2sinAftD e^^^cos ßtD + ^ sin ßtD)J (U) 

Here ß = ^(ata) + A2/4, 7 = ^(a+a + 1) + A2/4 
The abrupt transition between the two stages allows to use the sudden approximation, 

i.e., to assume that the system's state remains unchanged during the switching. Thus the 
single-cycle evolution operator is 

Ü(T) = ÜF(tF)ÜD(tD). (15) 

The entangled field-atom state after K cycles of modulation is given by 

m = KT)) = UK{T)\W)) = [UF(tF)ÜD(tD)f\m)- (16) 

The field state projected by successful measurement of the atom in |e) after K cycles 
has the form, analogous to expressions (7-9), with <pn: 

pn = arccos <^ cos (ßntD) cos (AtF/2) - — cos (ßntD) cos (AtF/2) > (17) 

It is possible to design more complicated modulation schemes, in which each cycle con- 
sist of several unequal intervals with different detunings. We can thereby control enough 
parameters to prepare a superposition of several Fock states with arbitrary amplitudes from 
an initial coherent state, by the same as described above. In Fig.6 we show that (a) superpo- 
sition of 3 Fock states with arbitrary pre-determined amplitudes can be obtained from initial 
coherent states, using modulation with 3 different detunings and time intervals within each 
cycle; (b) The CM success probability is much larger than the squared project of the initial 
onto the final state. 

This work has been supported by USARDSG, Minerva and the German-Israeli Founda- 
tion. 
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Appendix B: 
Lasing Without Inversion via Spontaneously Formed Coherence 

in Photonic Band Gaps 

A.G. Kofman and G. Kurizki 
Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel 

Assume that the transition between a ground \g) and an excited |e) levels of the atom is 
near resonant to a photonic band. The strength of the atom-band coupling is characterized 

by the function 

G(W)=^|«A|
2%-a;A), (1) 

A 

where K\ is the matrix element of the coupling between the atom and the mode A with 
the frequency u\. The band is assumed to be well separated from other bands, so that the 
influence of the latter can be neglected. Moreover, the band is assumed to be sufficiently 
dense and narrow, i.e., 

Gm > A6,  |Ara|, (2) 

where Gm and A& are the maximum value and the width of the function G(u) respectively, 
Am — ua — um, um is the center of gravity of the band, 

= i fL <LJUG(U), (3) 

ujj and LOL are the lower and upper band edges respectively, and 

A = I"1 duG(u). (4) 

Then the level e can be shown [1] to split to two levels 1 and 2, described by the normalized 
wavefunctions, 

\*i) = 0' = 1>2). (5) 

The energies 7JCJ1?2 and the amplitudes y/Ci^ of the states 1 and 2 can be expressed through 
the moments of G(u>). In particular, the level separation to first approximation is 

u2-u1 = sj4A + All = nR, (6) 

where fi# is the vacuum Rabi frequency. An excited atom injected at t = 0 into the PBS 
in the case (2) undergoes an insignificantly small spontaneous decay over a time of order 
1/fifi, after which the excited-state wavefunction becomes a coherent superposition of the 
states \ißi) and l^) [1]? 

l^t^Äle^' + V^We^, - (7) 
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If there is a nonzero matrix element of the dipole moment, d3ei for the transition between the 
level e and another level 3, it then follows from (5) that the dipole moment matrix elements 
for the transitions 1-3 and 2-3 are given by 

^3i = \/cid3e,      dZ2 = ^/oid-it- (8) 

For the narrow-band, near-resonant case, A^ < 4A, which is of special interest here, one 
gets in the first approximation 

ci=c2 = -,      uh2 = T vA. (9) 

The density matrix elements of the system consisiting of the levels 1 and 2 are [cf. Eqs. (7) 
and (9)] 

I e2W At 
Pll{t) = P22(t) =  -, Pu(t) = P*21(t) =  ~Y~. (10) 

The coherence between the levels 1 and 2 can be utilized to produce lasing without 
inversion [2]. Following Refs. [3-5], consider a A-system. The field 

E(t) = E0e-iwt + c.c. (11) 

couples the upper level 3 with the lower levels 1 and 2. The levels 1, 2, and 3 have have the 
reciprocal lifetimes respectively 71, 72, and 73 = 7si +732 + 7s> where 731, 732, and 73 are the 
spontaneous rates of transitions from the level 3 to the levels 1, 2, and all others respectively. 
The levels 1 and 2 can have finite lifetimes due to one or several of the following factors: 
spontaneous transitions to levels other than the ground state, finite time of presence of the 
atom in the structure, "background" of modes (outside the narrow band discussed above, 
which causes the splitting of level e), and collision-induced transitions. The open 3-level 
system consisting of the levels 1, 2, and 3 is described here by an unnormalized density 
matrix R(t), whose diagonal elements yield the number of atoms in the laser cavity in the 
respective level. In the rotating wave approximation, the rotating-frame matrix elements of 
R(t) obey the equations, 

Ru = -i{Vl3R31 - V3lR13) - 7lRu + 7'31R33 + Wn, 

R22 = ~i{V2zRz2 ~ V32Ä23) - 72-R22 + 732^33 + W22, 

R33 = -2(^31^13 + V32R23 - Vl3R31 - V23R32) - 73^33 + W33, 

R12 = (iüj2i - 72i)i?i2 + i(V32Ri3 - V13R32) + W12, 

Rl3 = (iA3i - 73l)-R13 + ^23^12 - iV13(R33 - Ru), 

R23 = (iA32 - 732)i?23 + zV13i22i - 2^3(^33 - R22). (12) 

Here A3j = U3J—LO, V3J — V*3 = —d3jE0/fi (j = 1, 2), 7,-j is the decay rate of the nondiagonal 
matrix element Rij, W33 is the pumping rate of atoms to level 3, W^ = qp°- (i,j — 1,2), q 
being the rate at which atoms form a coherent superoisition of the states 1 and 2 (by 
spontaneous decay of |e)), described by the normalized density matrix p°-. 

The complex susceptibility x is expressed through the solution of Eqs. (12) by 
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x = x - %x 
Air 

VE* 
(d3iRi3 + d32R23] (13) 

(in the Gaussian system of units), where V is the structure volume. The steady-state solution 
of Eqs. (12) yields in the first order in the field, 

= _iüi (1<*i3l2jVi3 + / + \d23\2N23 + /*; 
hV \   731 - ZA31 732 - «A 

(14) 
32 

where Ni3 = R^ - i?33 (i = 1,2), #-°' is the steady-state value of Rij in the absence of the 

field, 

W: 
/&> = ^H,    M0) 1 73i 

<-33 
73 

-[Wii + ^Wss]     (i = 1,2), 
7; V 73      / 

(15) 

and 

r        J     J     D(0) ^31 ^23 ^12 
/ = d31d23R\2' =  : • 

721 - ILÜ21 

Eqs. (13) and (14) yield 

„ = 47T_Re f\d13\2Nl3 + f + \d23\2N23 + f 

hV      I   731 - iA3i 732 + z'A32   / 

(16) 

(17) 

The necessary condition for lasing is x" < 0- Below we consider some situations where lasing 
is possible in the absence of inversion, i.e., for N\3 > 0 and N23 > 0. 

Let 

731 = 732 (18) 

and 

A 31 -A32,     i.e.,    u) = (u31 + u32)/2. (19) 

Then for 

arg / = 7T — <f>,     where     tan <f> 
^21 

273i' 
(20) 

the terms proportional to / in Eq. (17) are negative, yielding with the account of (16) and 

(17) 

47T 
X 

Wy/lli + Ü&/4 

2\d31d32W121     731 (|4i |2^Vi3 + \d32\2N23) 
2 

^21 \lll\+ul\l± 
(21) 

Consider first the case of a very small separation of the levels 1 and 2, u2i <C 721, 731- 
In this case <f> « ^21/(2731) < 1 in Eq. (20). Then 
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x" = 
4TT 

hV-y; 
-R (0) 

'33 
31 

+      1 
732 \  I j     |2- 

72  / 

+ \dzi\2WU    ,    M32|2VF22 2\d31d32W12\ 
(22) 

7i 72 72i 

The second bracketed term here can be shown, with the help of inequalities 721 > (71 +72)/2 

and p°2 < \JP11P22, to be nonnegative. However, it can be made very small. In particular, 
it vanishes if 

I 0 1 _   0   _   0 
\P121 — Pit — K22) \d3i\ = \d: 32 

712  = 7l  = 72- 

Then 

X" = 
87T|^3I|

2
Ä 

(0) 
l33 

(23) 

(24) 

(25) 
hVj3i      \~ 27i 

If 731 + 732 < 27i the lasing is possible for very small number of atoms at the levels 1 and 
2, irrespective of the populations of the levels 1 and 2. 

Consider now the opposite case of a large separation of the levels 1 and 2, io2\ ^> 721, 2731. 
In this case <f> « 7r/2 - 2-f3l/u2i « 7r/2 in Eq. (20). Assuming the validity of (23) which is 
justified in'the above closely resonant case of the level splitting in a PBS [cf. (8)-(10)] and 
assuming also that 

7i = 72,     731 ~ 7i/2, 

Eq. (21) becomes 

X' 
16T7X |^311 

R{0) 
-^33 1 7i 

273i 
R 

(26) 

(27) 

If 731 = (71 +73)/2, the second inequality in (26) is equivalent to 73 <C 71 and (27) becomes 

16^71^3112 (n{0)       73 n(oA (28x 
X   - hVu^ 

R(0)_ 73p(0) 
l33 

7i 

Equations (27) and (28) show that due to a coherent superposition of the states 1 and 2 
only a very small fraction of the atoms in these states absorb the field E(t) and therefore 
can yield gain when the number of the atoms at the level 3 is much less than the number of 
the atoms at the lower levels 1 and 2. 
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Appendix C: 
Photon Exchange by Atom Pairs in Resonators 

G. Kurizki, A. G. Kofman 
Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel 

V. Yudson 
Physics Dept., University of Ulm, 89069 Ulm, Germany. 

(June 13, 1995) 

A system of two identical atoms sharing a photon with a high-Q resonator 
mode is studied by a non-perturbative formalism. As opposed to previously 
considered models, here the interatom coupling is shown to result from com- 
peting effects of vacuum Rabi splitting and photon exchange via off-resonant 
modes.   Strong suppression of interatom excitation transfer is predicted at 
both near- and far-zone separations. 

PACS numbers: 42.50.Fx, 42.50.Md 

The physical importance of a system of two resonant atoms sharing a photon is evident 
from the numerous studies of its various aspects: causality and retardation of the interatomic 
photon exchange [1]; atomic level shifts due to the photon exchange, which are identical with 
the resonant dipole-dipole interaction (RDDI) [2,3]; oscillatory cooperative decay in diatom 
dissociation [4]; spectra [5] and squeezing [6] of two-atom resonance fluorescence. The above 
literature has dealt with atoms in open space, whereas studies of cooperative atomic effects 
in resonant cavities have been extensions of the Tavis-Cummings model [7]. This model 
assumes many atoms identically coupled to a single mode and ignores the symmetry-breaking 
dipole-dipole effects, which are important at near-zone separations [3,5]. 

This Rapid Communication is aimed at gaining new insight into systems which are now 
becoming experimentally realizable [8]: a pair of identical two-level atoms (or excitons), 
sharing a photon with one or many high-Q modes in a resonator. To this end, we develop a 
formalism capable of treating two atoms coupled to a field with an arbitrary mode-density 
spectrum in a non-perturbative fashion. Such a formalism is necessary because the standard 
perturbative treatment of two-atom coupling, to second order in the field [2], is inadequate 
for a reservoir whose mode-density spectrum does not vary smoothly, as demonstrated al- 
ready by our comprehensive theory of a single atom coupled to such a reservoir [9]. We 
predict drastic modifications (as compared to previously studied models) of the energy lev- 
els and interatom excitation transfer in such systems, both at near-zone and far-zone atomic 
separations. These modifications are due to interfering (competing) effects of strong atomic 
coupling to high-Q modes (vacuum Rabi splitting [7]) and interatom photon exchange via 
all other modes (RDDI [2,3]). 

Here we concentrate [10] on a system of atoms A and B that are nearly-resonant with 
a cavity mode or band of degenerate modes (as in spherical resonators). The effective 
Hamiltonian, which can be derived from first principles, has then the following second- 
quantized form in the rotating-wave approximation (RWA) 

H = h(LüA\eA)(eA\+iüB\eB){eB\) 
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+ frM(\eA)(eB\ + \eB)(eA\) + hY,uxa[ax 
x 

+ hJ2(KA\a\\zA){gA\ + KB\a\\eB)(gB\ + H.c). (1) 
A 

Here \eA(B)) and \gA(B)) are the excited and ground atomic states. The frequency ux and 
annihilation operator a\ pertain to a near-resonant field mode labeled by A whose position- 
dependent dipolar coupling to atom A or B is given by KA(By, %uA^B) are the excited-state 
energies including the spatially-dependent shifts due to single-atom interactions with the 
field reservoir outside the near-resonant narrow line (band) and M is the matrix element 
of the interatom interaction via the same reservoir calculated by second-order perturbation 
theory [2,3]. Both huA(B) and M may have imaginary parts (see below). 

The time-dependent wavefunction for the system of a single photon shared by the field 
and atoms can be written as 

|tfi(<)> = CLAb(t)\eAgB, {Ox}) + <xBb(t)\eBgA, {0A}) 

+ T,ßxb(t)\gAgB,lx), (2) 
A 

where |{0A}) and |1A) are the vacuum and A-mode single-photon states, respectively, whereas 
b = A,B denotes which atom is excited initially. The Schrödinger equation yields the 
following exact Laplace-transform solutions (within the RWA) for the excited-state .S-matrix 

a{s) = D-1(s)Ü(s). (3) 

Here a(s) and U(s) are 2 x 2 matrices in the basis of \eA{B)gB{A)). The diagonal elements 

of U(s) are UAA(BB) = s + iwB(A) + iJß(A)(s), where 

j      / N       f GA{B)(u)du 

J IS — U) 

GA(B){u) = Y^\
K

A(B)X\
2
S{

IJJ
-

UJ
X)- (4) 

A 

Here and henceforth the integration is performed only over the narrow band of near-resonant 
modes. The off-diagonal elements are UAB(BA)(S) = -iM - iJAB(BA)(s), where 

j (   \ [ GAB(BA)(u)düJ 
JAB(BA){S) = /  }—'- , 

J is — u 

GAB{BA){u) = J2 KA(B)XKB{A)xS(u - ux). (5) 
A 

The resolvent (denominator) of Eq. (3), D(s), is the determinant of the matrix U(s). 
The roots of the equation D(s) = 0, which correspond to the levels (eigenvalues) of the 
system, can differ strongly from the standard perturbative solutions, as shown below. Our 
subsequent analysis rests on the following assumptions, (i) The transition frequencies and 
decay rates of atoms A and B are equal, which is true for identical atoms far from cavity 
walls or dielectric-layer interfaces, (ii) The transition dipole moments are real and the 
mode functions are standing waves, i.e., also real; then GAB(UJ) = GBA(u) is real, yielding 
UAB(s) = UBA{S), whence aAB(t) - aBA(t). 
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The case of weak atom-reservoir coupling obtains if the near-resonant line (band) is 
sufficiently broad and not sharp (e.g, a single mode broadened due to its finite Q-factor). 
By suitable extension of the validity conditions for the Weisskopf-Wigner approximation for 
single-atom emission [9], we find that this case holds if the mode-density spectrum is smooth 

enough, so that 

dJ A(B) 

dui/ 
<   1, 

dGA(B){uA) 
du 

< 
GA(B)(

UJ
A] 

\ReJA(B)\ 
(6) 

where JA(B) 
= JA{B){—^A + 0). We then replace the near-resonant contributions JA(B)(S) 

and JAB{S) by constants, JA(B) and JAB = JAB(-^A + 0) respectively [see Eqs. (4) and (5)], 
and absorb them into the single-atom and two-atom level shifts and the respective decay 
rates. The resulting eigenvalues and eigenstates of the singly-excited system are then 

w»(«) 

l^(-)>|{0>}> 

Reib A ± ReM, 
1 

V2 
(\eAgB)±\9AeB))\{0x}), (7) 

where üA{B) = ^A(B) + JA(B), M = M + JAB, and s (a) denotes the symmetric (antisym- 
metric) eigenstates. These two states are split by the RDDI shift (which is modified by the 
structure) and give rise to damped sinusoidal oscillations of the excitation-transfer probabil- 
ity from A to B at a rate of 2ReM, which varies as R~3 at near-zone separations, toAR/c <C 1 

[2,3]. 
We shall be primarily concerned with the very different behavior obtained in the case 

of a sharp, narrow line or band whose center of gravity is at UJ0. Consistently, one can 

use in Eqs. (4) and (5) the approximation GA{B)(
U}

) ~ ^K
A(B)O^(

U
 ~ uo) and GAB{W) ~ 

EA 
K
A\K*BX5(U — w0), N being the number of near-resonant modes in the narrow band and 

|«.4(S)o| the root-mean-square of |«A(B)A|- This approximation holds if V^V|«>I(B)O| is much 
greater than the band width. It implies that we neglect all dissipation, i.e., the decay 
rates JA and ImM, originating from the background density of modes outside the line 
(band), since they are assumed to be much smaller than the oscillation frequencies in the 
system, and we are interested in times <C 7I1, |ImM|-1. As a second simplification, we 
shall confine ourselves to the case EA

K
AA«BA 

= NKAQKBO, which holds for a single near- 
resonant mode or a fully degenerate mode, such that KA\I^B\ is independent of A (otherwise, 

I J2\ KA\K*B\\ < N\KAOKBO\)- We shall take KAO > 0 and the sign of KBO to be that of the 
ratio KA\/KB\- Following these two simplifications, the equation D{s = — iui) = 0 becomes 

- lu uA 

NK
2 

UB 

BO 

+   M + 
NKAOKB0\ 

OJ — UQ    ) 

U — UJQ 

2 

0. (8) 

We have now reduced the problem to that of two atoms coupled to a single mode via 
coupling constants \^NKAQ and \/NK,BO, and to each other via matrix element M. A Hamil- 
tonian describing this problem can be written as a 3 x 3 matrix in the basis of the states 
\eA{B)9B(A)i {0}) and \gA9B, lo), where 0 and 10 are the vacuum and single-photon numbers 
in the near-resonant mode. We have evaluated in closed form the eigenvalues (Fig. 1) and 
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eigenfunctions corresponding to Eq.   (8), yet it will be more illustrative to focus on the 
following distinct limits: 

(a) Let us assume that KAO « KBO. This approximate equality of the atomic couplings 
to the mode holds for identical atoms with parallel dipoles in the near zone of separations, 
u!AR/c <C 1. In this approximation the eigenvalues are given by 

n = ^2N{KAQ + KB0)
2
 + (us - u;0)

2, (9) 

where now us^ = (LOA+UB)/2±M. These results hold over most of the near-zone separation 

interval (except for the range specified below). For \u}a-u0\ > V2N(KAQ + KBO), which is the 
case e.g., for R -+ 0, Eq. (9) yields that OJ+ and w_ tend to us and u0, indicating that the 
near-resonant field mode is decoupled from the RDDI-split symmetric and antisymmetric 
states. Throuhout the range of validity of Eq. (9), only the antisymmetric-state eigenvalue 
remains unperturbed, since the coupling of this state to the mode 2-^

2
(KAO - KBO) « 0 

in the near zone. By contrast, the symmetric state and the single-photon state become 
hybridized, giving rise to two eigenvalues that are split by ±J7, the symmetric-state vacuum 
Rabi frequency.   The above trends are also reflected by the corresponding dressed-state 
eigenfunctions 

hk)«hM0}>,   |V>i,2>«|tf>±) 

ttsA0})±V2N   K*0 + KB0   \gA9B,l0) 
\l±(üJs-Uo) 

(10) 

where c± = [1 ± (us - u0)/ü}/2. We note that \^s, {0}) and \gAgB, 10) coincide with \iß+) 
and |^_) for \u3 — u0\ > V2N(KA0 + KBO), but otherwise the symmetric and single-photon 
states are strongly mixed in |?/>±). 

These eigenfunctions can be used to calculate the probability of excitation transfer, 
say, from the initially excited atom A to the initially unexcited atom B, PB{t), and the 
corresponding excitation-trapping probability PA(t), 

PB{A){t) J2(^B(A)\4>z)(i>i\i>A)e- ■iuiit 

«=1 
(11) 

where \ipA{S)) = \ZA{B)9B{A)-, {0}). Thus, the two-atom symmetry determines the Rabi 
splitting, whence we find three distinct atomic-state frequencies, causing aperiodic oscilla- 
tions of Pß(A)(t), instead of sinusoidal oscillations in previously studied cases [2,7].   The 

— 2 
rime averaged probabilities, PB{A) = £?=1 (^B(A)|^)(^#A) , are approximately equal, 

PA « PB, varying from 3/8 at \u>a - u0\ < V2N{KA0 + KBO) to the free space value 1/2 at 
\us - wo I > V2N(KAQ + KBO) (note that in this system PA{t) + PB(t) < 1, because of the 
nonzero probability of the mode excitation). 

(b) Let us now consider the effect of the small near-zone difference KAO - KBO which scales 
approximately linearly with the separation R. This effect is most remarkable in the range 
of separations, corresponding to pseudocrossing (near-equality) of two eigenvalue curves in 
Eq.   (9) (solid curves on Fig.   1), <x>+ ^ u3 for M < 0 and a;_ ss u3 for M > 0.   We shall 
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assume below that M is positive in the near zone. The pseudocrossing separation Rc can be 
estimated from Eq. (9) for the parameters that maximize KA(B)O'- 

a single mode confined to 
the smallest possible volume ~ A^ (where A^ = 2irc/uA), transition dipole moment dA ~ ea, 
a being the excited state radius, and, corresppondingly, uA ~ e2 /{ha). Using the maximal 

estimate for RDDI, M ~ (ea)2/R3, this yields (i) Rc ~ N-^6y/a/(2ir)XA, where a = 1/137, 

\i\ujo-uA\ < V2N{KAO + KBO); (ii) Rc ~ [UO-U)A/(NLüA)]
1/3

\A, iiLo0-uA » V2N(KAO+KBO)- 

In either case, Rc <C XA, i.e., the pseudocrossing occurs well within the near zone. Note that 
for certain dipole orientations M is further reduced and Rc can become even smaller. 

Drastic modifications of the interatomic coupling occur near Rc (as compared to the 
cases discussed above), due to the strong competition of RDDI and Rabi splittings. The 
eigenvalues in Eq. (9) are then replaced by the more accurate solutions of Eq. (8) 

wi«u;+,     UJ2,3 « -{(JJ- +ua ±fi'), 

n'=V/Vo2 + (----a)2,        V0=       ^^-^O)      . (12) 

Here |Vo| equals the minimal splitting u2 — u>3 and also determines the width of the pseu- 
docrossing interval, which is defined as follows: ARC = \Ri — R2\, where ua_(i?1)2) = \Vo\ 
and a;a_ = \u)a — w_|. For two atoms far from a node of a sinusoidal mode, VQ ~ 
NKAQ\KAO — KBO\/(VSNKAO + \u>o — u3\) and is proportional to Rc at near-zone separations 
[11]. 

The eigenfunction \il)+) is not affected by the pseudocrossing, whereas |^_) and \ij)a) are 
strongly mixed near Rc, forming 

[-02,3 ^->±ty±J!-M.)l*"{0}) (13) 

where b2,3 = [1±(CJ_ — ua)/Q']/2. This mixing implies the complete breaking of the symmetry 
[Eq. (7)], which characterizes the two-atom system subject to RDDI in the weak-coupling 
case. At R — Rc, \ip2,z) = 2-1/2(|^>_)±|V>a, {0}))- For sufficiently large and positive detuning 
w0 -w, « H, c+ -»■ 0, yielding [see Eq. (10)] \ip2) -»• |e^s,{0}), and |^3) -» kssu, {0}), 
which means that the excited states of atoms A and B become uncoupled, due to interference 
of \ips) and |^a). The corresponding time-averaged value of the excitation transfer probability 
exhibits strong suppression in the pseudocrossing interval, PB(R — Rc) = 3c^_/8 <C 1. 
Concurrently, PA(R = Rc) = 1 — c+ + (3/8)c+, tending to 1 with the increase of uQ — us 

(solid curves in Fig. 2). This means that the excitation is then strongly trapped at the initial 
atom, which reflects the decoupling of the atomic excited states. These results sharply 
contrast those outside the crossing region [limit (a) above]. 

(c) Finally, let us examine the limit of large differences between the couplings: Ka = 
2

_1/,2
|«AO — «so| ~ K3 = 2~

1
/
2
\KAQ + «BO|- For atoms with non-parallel dipoles, this limit 

can occur at any separation. The analysis of Eq. (8) in this limit shows that the results of 
limit (b) apply to the pseudocrossing of u>a with w_, if uQ — uA ^> /cs(a). The only salient 
difference with limit (b) is in the width of the pseudocrossing region. According to the 
discussion following Eq. (12) this region is defined by ua-(R) = \u>a(R) — O;_(JR)| ^ |Vo(i?)|. 
Under the condition u>0 — uA ^> K3 ~ Ka, we find that ua-(R) increases with R for R > Rc, 
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until it attains its upper bound NK
2
J(UQ - uA). On the other hand, \V0\ decreases for 

R > Rc down to its lower bound NnsKa/(ujQ - uA) (actually this bound is slowly varying 
due to the spatial dependence of KSA, but this does not change |V0| appreciably). Since these 
two bounds coincide, the pseudocrossing region can extend from R < Rc < XA to R > \A 

(dashed curves in Fig. 1) (!). Throughout this region, Eqs. (12) and (13) hold fully, i.e., 
excitation transfer is strongly suppressed by interference of |^s) and |^0) (dashed curves in 
Fig. 2). Similar results hold also for uA - UJ0 > /ts(a). 

The analytical treatment outlined above is in full agreement with the numerical analysis 
of the exact Eq. (3) (as shown in Figs. 1 and 2). Both treatments demonstrate that two 
identical atoms interacting via a near-resonant narrow-linewidth mode (or degenerate band) 
and an off-resonant reservoir can exhibit a much richer variety of spectral and dynamical 
features than what is currently known. It must be viewed as a system of three mutually 
coupled excited states (as opposed to two such states in previously studied models [2,7])". 
The dipole-dipole (RDDI) coupling and the mode-induced Rabi splitting are inseparable in 
this system. The interatom coupling results from mixing of all three states, which is most 
striking for separations where the two predominantly-populated levels nearly cross. Then 
the^ competing RDDI and Rabi splittings cause strong interference of the symmetric and 
antisymmetric two-atom excited states, leading to decoupling of single-atom excited states. 
This occurs at near-zone (quasimolecular) separations (as small as 10_2A^) and corresponds 
to suppression of interatom excitation transfer, compared to the electrostatic near-zone limit 
of RDDI.      • 

The present predictions, particularly the suppression of excitation transfer at quasimolec- 
ular separations, may be important in various systems of two atoms, molecules, or excitons 
withm high-Q resonators. Dielectric sphere surfaces and Bragg resonators are particularly 
suitable configurations. Control of the initial state of each partner, even at short separa- 
tions, can be achieved by: (i) excitation of only one partner, say A, to \eA), via another 
state \uA) which differs from its counterpart in B, although the transitions \eA) -> \gA) and 
\eß) —> \gs) are identical (this option is common in molecules or impurity-bound excitons); 
(ii) single-partner excitation localized on a 102 nm scale (by electronic, XUV or near-field 
optical techniques); (iii) slow (ultracold) atom collisions in a cavity, with one atom initially 
excited outside the cavity. The dipole orientations are controllable by the initial excitation 
and (or) by magnetic splitting of Zeeman sublevels. 

This work has been supported by USAR DSG and the Minerva Foundation, Germany. 
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FIG. 1. Inset - competing dipole-dipole and vacuum Rabi splittings for two identical atoms 
coupled to a near-resonant mode. Solid curves - exact eigenvalues as a function of the normalized 
separation R/XA for JV = 1, M = (7A/2)(WAE/C)

-3
, where -yA is the free sPace decay rate of the 

atom excited state, uQ - uA = IQ
3
1A, KA(B) = 1037Asin(a;^rA(B)/c), and rA = O.3A4. Note the 

narrow pseudocrossing region. Dashed curves - idem, for KA = IOOO7A and KB = 5007,4- The 
pseudocrossing region is now very broad. 
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FIG. 2. The time-averaged excitation probabilities PA and Pg [PA(0) = 1] for same parameters 
as in Fig. 1: solid curves - for narrow interval of excitation-transfer suppression; dashed curves - 
for broad interval of suppression. 
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Appendix D: 
Self-Induced Transparency in Bragg Reflectors: 

Gap Solitons Near Absorption Resonances 

Alexander Kozhekin and Gershon Kurizki 
Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel 

We show that pulse transmission through near-resonant media embedded 
within periodic dielectric structures can produce self-induced transparency 
(SIT) in the band gap of such structures. This SIT constitutes a principally 
new type of gap soliton. 

42.50Rh, 42.25.Bs, 03.40.Kf, 78.66.-w. 

Self-induced transparency (SIT), namely, solitary propagation of electromagnetic (EM) 
pulse in near-resonant media, irrespective of the carrier-frequency detuning from resonance, 
is one of the most striking and important effects of nonlinear optics [1,2]. It reflects the 
essence of driven two-level atom dynamics, which is described, in the soliton frame, by a 
pendulum equation for the pulse area 9 (the sine-Gordon equation). If the pulse duration 
is much shorter than the transition (spontaneous-decay) lifetime (Tx) and dephasing time 
(T2), and 9 is a multiple of 2TT, then pulse-area conservation gives rise to SIT, corresponding 
to re-emission of the absorbed radiation in-phase with the driving field. 

One of the standard tacit requirements for SIT is uniformity of the medium. Indeed, 
one would expect that partial reflection of the field in a non-uniform, e.g., layered, medium 
should destroy SIT, because the pulse area is then split between the forward and backward 
(reflected) waves, and is no longer conserved for each wave. This expectation seems to be 
supported by treatments of a single thin resonant film [3] or periodic array of such films [4], 
which yield bistable (two-valued) transmission of the incident pulse, owing to the coupling of 
the forward and backward waves. Should we then anticipate severely hampered transmission 
through a medium whose resonance lies in a reflective spectral domain (photonic band gap) 
of a periodically-layered structure (a Bragg reflector)? In this Letter we show that, contrary 
to such expectations, it is possible for the pulse to overcome the band-gap reflection and 
produce SIT in a near-resonant medium embedded in a Bragg reflector. 

The predicted SIT propagation is a principally new type of gap soliton, which does 
not obey any of the familiar soliton equations, such as the non-linear Schrödinger equation 
(NLSE) or the sine-Gordon equation. Its spatio-temporal form, intensity dependence and 
transmission mechanism are shown here to be quite unique. Nevertheless, it shares several 
common features with the extensively - studied gap solitons [5-8] or with ultrashort pulses 
[9] in Kerr-nonlinear Bragg reflectors. 

We consider the propagation of an EM pulse through a medium consisting of two-level 
systems (TLS) embedded within a one-dimensional periodic dielectric structure, e.g., a multi- 
layered dielectric mirror. Our starting point is the Maxwell equation for the field E 

2d
2E     d2E _d2Ptot m 

° dz*       df2 dt* l ; 

driven by the current of the total polarization P^0t = P\[n + Pn\-   The linear part of the 
1/2 

polarization Pj-n = Xlm-^ 1S characterized by a linear refractive index nj-n = eJ   = (1 + 
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47rXlin)1/2 witn fundamental period d, <qin = £o + Em=i Aem cos(2mkz), where k = ir/d and 
Aem is the variation of m-th harmonic of the dielectric index. The non-linear polarization 
Pnj is the near-resonant response of the TLS. 

We may, analogously to the theory of distributed feedback lasers [10-12], decompose the 
total field and non-linear polarization into forward (F) and back-reflected (B) components 

E(z, t) = [£F(z, t)eikz + £B{z, t)e~ikz\ e~iwaet + c.c (2a) 

Pnl(z, t) = [VF(Z, t)eikz + VB{z, t)e~*kz] e~iw^ + c.c (2b) 

assuming that the carrier frequency u lies near the center of the lowest fundamental band 
gap ugc = kc/no, where n0 = e0 • The small detuning from the gap center \ugc — u\ < u> 
will be considered as phase modulation of the complex amplitude £F(B)- Under the weak- 
reflection assumption (|Aem| < e0) we may drop spatially fast-varying components (varying 
on the scale of a wavelength) of E and PRj, and, consistently, m > 1 terms of ej- . We 
then obtain the following coupled-mode equations for the Rabi frequencies corresponding to 
the slow-varying field amplitudes, QF(B) = (J.£F(B)/^, where ß is dipole moment of the TLS 
transition [12] 

\rT~th + di) ^F{B) = icK/n°^B(F) + r~2VF(B) (3) 

Here and hereafter the upper (lower) sign corresponds to the first (second) subscript. The 
first term on the r.h.s. of (3) describes the forward-to-backward wave coupling via Bragg 
reflection with characteristic reflection (attenuation) length 1/«, where K = kAei/4e0. The 
second term is proportional to the TLS polarization current, and r~2 = (2iru>i2H2cr)/(nlh) 
is the inverse square of the cooperative resonant absorption time rc, a being the density of 
the TLS. Note that K is positive or negative for TLS embedded in regions with the higher 
or lower refractive index (Aex > 0 or Aet < 0), respectively. 

In treatments of bidirectional field propagation in media with arbitrary spatial distribu- 
tion of near-resonant atoms [13,14], the Bloch equations for the population inversion w{z, t) 
and polarization Pnj are entangled in a fashion which leads to an infinite hierarchy of equa- 
tions for successive spatial harmonics. The truncation of this hierarchy can only be justified 
by phenomenological arguments. Here we avoid this complication by restricting the near- 
resonant species distribution to thin layers (much thinner than the resonant wavelength) 
with the same periodicity d as the dielectric structure. Then the nonlinear polarization 
envelopes may be decomposed as [4] 

VFiB) = j:Pn\^t)8(z-z^Tlkz (4) 

Here Pn^(zj,t) is the nonlinear polarization of the TLS in the j-th. layer (ZJ = jd). The 
Bloch equations then assume the form 

dtPnl(zht) = w(zj,t) (0Fe^ + nBe-lkz> 

- i(ugc - u;12)Pn|(zJ-, t) (5a 

dtw(2j,t) = -Ip'jte,*) (nFeikz> + nBe-ikz- 
2 

+ c.c. (5b) 
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where w is the population 'inversion and togc - w12 is the detuning of the TLS resonance 
frequency LO12 from the gap center. The periodicity of the TLS positions which satisfy the 
Bragg condition, i.e., exp (±2ikzj) = 1 yields VF = VB = V in (4). Upon summing over all 
layers j, the Bloch equations (5) can be written under the Bragg condition in the following 
closed form, without resorting to harmonic expansion 

dtV(z, t) = w{z, t) (fiF + ÜB) - i(ugc - u12)V{z, t) (6a) 

dtw{z, t) = -\ [P*(z, t) (ftF + £lB) + c.c. ] (6b) 

In an attempt to further simplify the Maxwell-Bloch equations, we first convert the 
variables to the dimensionless form r = t/rc ; ( = n0z/(cTc) ; 77 = KTC and 8 = (ugc -w12)rc. 
We now rewrite Eqs.(3) and (6) for the sum and difference of the forward and backward field 
envelopes S+ = TC(OF + ÜB) and S_ = TC(CIF - fiB), and obtain by simple manipulations 

d2
T-d*]X+=2dTV + i2T]V-ri2i:+ (7a) 

d2
r - d2} S_ - -2d<V - T?

2
E_ (7b) 

Although S+ and £_ now obey separate equations, they are still coupled via V, which 

satisfies the Bloch equations 

dTV = ioE+ - iSV (8a) 

dTw = -1-(v*X++VZ*+) (8b) 

We emphasize again the crucial role of the assumption that the TLS layers are much thinner 
than a wavelength and satisfy the Bragg condition. Without this assumption we could not 
have obtained (7) and (8), which are closed in V and w (in contrast to Ref. [13,14]). 

Equations (7) and (8) cannot be reduced to any familiar soliton equation. Our main idea 
is to try for the above equations a phase-modulated 27T-soliton SIT solution 

exp(i(aC-Ar)) ( , 
L+ " A°cosh[/3(C/u-r)] l ' 

where A = (u -wsc)rc, A0 is the amplitude of the solitary pulse, ß its width and u its group 

velocity (normalized to c). 
Substituting dTV from Eq.(8a) into Eq.(7a), we may express V in terms of E+ and 

the population inversion w. Then, upon eliminating V and using Eq.(9), we can integrate 
Eq.(8b) for the population inversion w, obtaining 

V(A - a/u) 1 ,    , 
W 2{8-K)      cosh2 [ß{(/u - r)] l    ! 

Using these explicit expressions for V and w in (7a) and (8a), we reduce our system to a set 
of algebraic equations for the coefficients a, A that determine the spatial and temporal phase 
modulation, and the pulse width ß as functions of the velocity u. The soliton amplitude is 
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then found to satisfy \A0\ = 2/3, exactly as in the case of usual SIT [2].. This implies, by 
means of Eq.(9), that the area under the E+ envelope is 2ir. 

Let us consider the most illustrative case, when the atomic resonance is exactly at the 
center of the optical gap, 6 = 0. Then the solutions for the above parameters are [15] 

a 
Tj   1 — 3u2 Tj 1 + u 2 

2u 1 - u2     ' 2 1 - u2 A=^—— (Ha) 

f = |Ao|V4 = ZAl-u2)-V
2(l + u2)2 

H
       '   °" / 4(1-u2)2 [      } 

In the frame moving with the group velocity of the pulse, (' = ( - UT, the temporal 
phase modulation will be (au - A)r, which is found from Eq.(ll) to be equal to -r\r. Since 
TJ = KTC is the (dimensionless) gap width, this means that the frequency is detuned in the 
moving frame exactly to the band-gap edge. The band-gap edge corresponds (by definition) 
to a standing wave, whence this result demonstrates that such a pulse is indeed a soliton, 
which does not disperse in its group-velocity frame. 

The allowed range of the solitary group velocities may be determined from Eq.(llb) 
through the condition ß2 > 0 for a given TJ, as illustrated in Fig.l. The same condition 
implies \rj\ < TJ max, where 

,2 5u 2fl U2) 

»7 max-    (1+U2)2 (12) 

It follows from (12) that the condition for SIT is \q\ < 1, TJ max = 1 corresponding to 
u = l/v3. This condition means that the cooperative absorption length crc/n0 should be 
shorter than the reflection (attenuation) length in the gap 1/«, i.e., that the incident light 
should be absorbed by the TLS before it is reflected by the Bragg structure. In addition, 
both these lengths should be much longer than the light wavelength for the weak-reflection 
and slow-varying approximation to be valid. 

From Eq.(7b) we find 

u 
£IF(B) 

1 

2T„ 
1±-]E+ u 

(13) 

and the equation for population inversion, obtained from Eq.(10) 

m = -1 + {h ~') cosh' m/u - r)i (14) 

The envelopes of both waves (forward and backward) propagate in the same direction; 
therefore the group-velocity of the backward wave is in the direction opposite to its phase- 
velocity! This is analogous to climbing a descending escalator. 

Analogously to Kerr-nonlinear gap solitons [5,6], the real part of the nonlinear polar- 
ization RePjj creates a traveling "defect" in the periodic Bragg reflector structure which 
allows the propagation at band-gap frequencies. The real part of the nonlinear polariza- 
tion is governed by the frequency detuning from the TLS resonance. Exactly on resonance 
(which we here take to coincide with the gap center) A = 8 = 0, RePnj = 0, and our 
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solutions (11) yield imaginary values of the velocity u and modulation coefficient a. The 
forward field envelope then decays with the same K exponent as in the absence of TLS in the 
structure. Because of this mechanism, SIT exists only on one side of the band-gap center, 
depending on the sign of K in Eqs.(3), i.e., on whether the TLS are in the region of the 
higher or the lower linear refractive index. This result may be understood as the addition of 
a near-resonant non-linear "refractive index" to the modulated index of refraction of the gap 
structure. When this addition compensates the linear modulation, then soliton propagation 
is possible (Fig.2). On the "wrong" side of the band-gap center, soliton propagation is for- 
bidden even in the allowed zone because the nonlinear polarization then cannot compensate 
even for a very weak loss of the forward field due to reflection. 

The soliton amplitude and velocity dependence on frequency detuning from the gap 
center (which coincides with atomic resonance) are illustrated in Fig.l. They demon- 
strate that forward soliton propagation is allowed well within the gap, for A satisfying 
(1 — A/1 — rj2)/r] < A < (1 + A/1 — r]2)/j]. In addition to frequency detuning from reso- 
nance, the near-resonant gap soliton possesses another unique feature: spatial self-phase 
modulation a( of both the forward and backward field components. 

To check our analytical solutions (9)-(13) we have compared them with numerical simula- 
tions of Eq.(3) using the numerical method developed in [4]. As the launching condition, we 
take the incident wave in the form Ep = Aexp [i(u — <jOgc)(t — to)}/ cosh [ß(t — t0)/rc] with- 
out, a backward wave {SB = 0) at z = 0. By varying the detuning u — ugc and amplitude A 
we investigate the field evolution inside the structure. When these parameters are close to 
those allowed by Eqs.(ll),(12), we observe the formation and lossless propagation of both 
forward and backward soliton-like pulses with amplitude ratios predicted by our solutions 
(Fig.3.a). By contrast, exponential decay of the forward pulse in the gap is numerically 
obtained in the absence of TLS (Fig.3.b). 

The observation of the predicted SIT at band-gap frequencies requires high values of 
the dipole moment /J, and high density of the TLS, in order to achieve short rc along with 
large T2 and T\ times (to avoid dephasing and energy losses by incoherent processes). The 
most adequate system for experimental observation of this effect appear to be excitons in 
semiconductors. Let us consider a periodic array of 12-nm-thick GaAs quantum wells (A = 
806nm) separated by A/2 non-resonant AlGaAs layers [16]. In this system fi ~ 10~18cgse 
and area density concentration a ~ 108 cm-2 are achievable (corresponding to an average 
bulk density of ~ 1013 cm-3) which yields rc ~ 10_13s. The relaxation time (at 2°K) is 
then T2 ~ lOps [16]. A solitary pulse duration of the order of <■ lps, i.e., much shorter then 
the dephasing time T2 corresponds to a pulse width ß ^ 0.1. From Eq.(ll) we find that 
SIT in this structure requires that r\ < 0.99, corresponding to a band-gap reflection length 
1/K > 100 A, i.e., Aei/eo ~ 0.01. An alternative choice may be bound L> excitons in CdS, 
which yield similar rc and T<i at lower exciton densities, (controlled by the donor impurity 
concentration) and are therefore more appropriable for the TLS description. 

To conclude, we have demonstrated the possibility of solitary pulse transmission through 
a one-dimensional band-gap region, by means of near-resonant polarization effects. In com- 
parison with Kerr-nonlinear gap solitons, near-resonant gap solitons have several unique 
features: temporal and spatial phase modulation, the detuning conditions and the result- 
ing velocity and amplitude threshold. Their salient advantage is stability with respect to 
absorption. By contrast, strong absorption is a severe problem associated with a large non- 
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linear Kerr coefficient. As regards applications, the sensitivity to launching conditions on 
the carrier frequency and pulse shape can make the predicted gap SIT an effective filter for 
signal transmission. 

The authors are grateful to T. Lakoba, B. Sherman and M. Krongauz for useful discus- 
sions and help with the computer simulations. This work has been supported by USARDSG 
and the Minerva Foundation, Germany. 
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FIG. 1. Dependence of the solitary pulse velocity (solid line) and amplitude (dashed line) on 
frequency detuning from the gap center for 77 = 0.7. At the gap edge (dotted line) u = l/VS and 

|£F|/|£B| = (V
/
3 + 1)/(V/3-1). 

f   A^ir 
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FIG. 2. The first-harmonic modulation A«ICOS2/JZ of the linear refractive index (dashed 
curve) in a structure of periodically alternating layers. This modulation can be canceled by the 
near-resonant nonlinear response Ree^ (inset), if it has the opposite sign to Aei at the TLS 
positions. 
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FIG. 3. Numerical simulations of the intensities of "forward" waves in the gap: (a) when 
Eqs.(ll), (12) are obeyed (77 = 0.7, group velocity u ~ 0.3); (b) without TLS (same 77 and incident 
pulse as in (a)). 
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Appendix E: 
Optical "Multi-Excitons": Quantum Gap Solitons in Nonlinear 

Bragg Reflectors 

Ze Cheng and Gershon Kurizki 
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel 

We have accomplished the Bethe-ansatz solution for pairwise interacting 
quanta within the effective-mass regime of band-gap propagation in nonlinear 
Bragg reflectors. Our theory predicts a new kind of collective excitations of 
the electromagnetic field dressed by such media, namely, optical multi-exciton 
(OME) complexes (or condensates), which are the quantum states associated 
with gap solitary waves. Their existence should be manifested by the discrete 
spectrum of band-gap transmission as a function of the incident photon num- 
ber and by the multi-exponential fall-off of intensity-intensity correlations on 
a 0.1 mm scale. OMEs should have advantageous stability properties. 

Quantum effects of light propagation in nonlinear fibers have been the subject of exten- 
sive studies in recent years [1]. These studies have established that optical solitons which 
are classically described by the nonlinear Schrödinger equation (NLSE) [2], have quantum 
analogs in the form of superposition of mutually-bound (spatially-correlated) multiphoton 
states. The description of such bound multiphoton states is given by the Bethe ansatz 

solution of the second-quantized NLSE [3]. 
Here we address the hitherto unexplored quantum regime of optical propagation in for- 

bidden spectral bands (band-gaps) of Kerr-nonlinear one-dimensional (ID) Bragg reflectors, 
wherein transmission of solitary waves (gap solitons) [4] and ultrashort pulses [5] has been 
predicted classically. By extending the Bethe ansatz solution to such systems, we reveal 
and investigate the striking analogy between mutually-bound multiphoton states of quan- 
tum gap solitons and multi-exciton complexes (excitonic molecules) in semiconductors [6]. 
These optical multi-excitons (OME) can be formed by the combined effect of (i) photon 
effective masses, which are endowed by the periodic-structure dispersion; (ii) Kerr-nonlinear 
interband photon attraction, and (iii) their intraband attraction or repulsion, also caused by 
Kerr nonlinearity. The main manifestations of OMEs are predicted here to be: (1) a series of 
discrete transmission lines in the optical band gap of the Bragg reflector, which correspond 
to increasing numbers of photon pairs and range from a single exciton to the "ionization" 
threshold; (2) multi-exponential fall-off of two-point intensity-intensity correlations. Both 
features exhibit dramatic, unparalleled dependence on the refractive-index modulation in 
the Bragg reflector. 

The effective Hamiltonian in terms of the magnetic and electric field operators B and E 
in a ID periodic Kerr-nonlinear dielectric structure can be written as 

H =:     dz 
/< 

1 .B\B + £V(z)£t£ + Z€QX{3)(2hWEE 
2fi0 2 4irp2 ;i) 

where :     : denotes normal ordering.  The Hamiltonian in Eq.(l) is similar to that used in 
studies of quantum solitons in nonlinear fibers [7] except that the dielectric index n2(z) and 
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the nonlinear susceptibility x^Kz) are now periodic in z. Here irp2 is the interaction region 
area, determined by the optical beam waist. On making the standard assumption that only 
the two bands bordering a certain band gap are involved in the nonlinear process [6], we 
can quantize the Hamiltonian in Eq.(l) in the two-band Bloch-function basis, denoting the 
lower ("valence") and upper ("conduction") bands by + and -, respectively The quantized 
Hamiltonian reads 

H=E 
a=± 

Y,huc*kaakaak + L  x  ]T Vaq(k,k')al^+qal:_klaa^kaatk+q 
k k,k',q 

+L~l J2 Viq(k,k')alik,+qa
f

+t_k,a+t„ka^ik+q. (2) 
k,k',q 

Here L is the structure length, Vaq(k,k') are the intraband matrix elements of the Kerr- 
nonlinear "potential", and Viq(k,k') are the corresponding interband matrix elements. 

We are interested in photon properties near the extrema of the two bands, where k = k0. 
We can therefore use the well-known effective-mass approximation [6] 

h2(k - k0)
2 

hu±k = hu± =F , (3) 

where m± = T^/(d2uj±k/dk2)ko are the photon effective masses in the two bands. In a 
structure of alternating layers with refractive indices nx, n2 and thicknesses a1; a2, in the 
case riiüi = n2a2 and for the second lowest band gap, the photon effective masses are found 
to satisfy 

c{ax + a2 
\2 

i + ifüa + 21 
2 \rii      n2 

sm [——-j . (4) 

One sees that |m_ —m+\ scales with the band gap width when |n2-rai| < nli2. Consistently 
with the effective-mass approximation, we replace the potential matrix elements in Eq.(2) 
by their values V± and Vt at q = 0 and k = k' = k0. As we shall be working in the coordinate 
representation, we take the Fourier transform of the annihilation operators aak, obtaining 
the following position-dependent field operators 

Mz) = L-l^a±k^
k-^. (5) 

k 

The Hamiltonian (2) can now be rewritten as 

H = h(u+ + w_)iV + HS1 (6a) 

where N = f (j^^adz is the single-band photon-number operator, and 

Hs = J dz I X; {-a(%2l2ma)dz<i>idzct>a + Va^Ja6a] + V^l^^X . (6b) 

The "kinetic energy" terms depend on the structure dispersion, whereas the "potential 
energy" signs are those of the Kerr nonlinearity x^3', i.e., positive (negative) for self-focusing 
(self-defocusing) media. 
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Since Hs commutes with N, we seek simultaneous eigenstates of both operators. Such 
eigenstates can be obtained exactly by the Bethe ansatz method, by extending Thacker's 
integrable quantum-field theory [8] to the present two-band system. Since each band contains 
an equal arbitrary photon number N, the Hamiltonian in Eqs.(6) admits only even numbers 
of quanta. We first construct the exact four-quantum eigenstate, and then generalize it to 
arbitrary even quantum numbers 2N. The resulting 2iV-quantum eigenstate is obtained 
from a tedious calculation according to the aforementioned procedure. It is given in its 

unnormalized form, by 

N 

J j=\a=± 
(7) 

where the spatial envelope (wave function) is 

N 

v{zl±,...,zN±) = n 
l,n=l 

im^m+Vi 

h2(m+k[- + m„kn+) 
sign(z(_ - zn+) 

*n n 1 + a 
i2maVa -siga(zja - zia) 

N 

lie XKtrtZ-} (8) 

The wave function #(zi±,..., zN±) is symmetric with respect to the exchange of any two 
subscripts j and / for photonic coordinates, consistently with the bosonic nature of photons. 
The application of the Hamiltonian H to the eigenstate |$2iv > yields the eigenenergy 

N / 7j2£2   • 
E2N = Nh(u+ + u;_) + £ £    -a- -^ 

2ma 
(9) 

In the above, all the wave vectors are measured relative to the band-edge wave vector k0. 
We are looking for bound-state solutions of (8), wherein the exponential factors are real, 

and fall off with the separation of photons from different bands \zJ+ - z;_| or from the same 
band, \zja - Zj>a\. It can be checked that the wave vectors kja in (8) must then satisfy 

m± r,   ,   ..       m-m+K,-        _-'"±"a(iV_2;- + 1)) (]0) 
kj± = T 

m±ya 
-K±i- ±-4T2 T «■ 

where a. = ± is chosen according to whether the Kerr nonlinearity is positive (self-focusing) 
or negative (self-defocusing), and NK is the total composite momentum, which can be 

expressed as 

N 

NK = Y,(kJ+ + *i .1 
i=i 

Equation (11) indicates that bound states consist of N "excitons", i.e., pairs of "conduction"- 
and "valence"-band photons. On using Eqs.(lO) and (11) in the wave function expression 

(8), we can bring it to the symmetrized form 
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N m^ZA_ — m+z; Y^„T^'"-~J- 
_ '"+^J+ 

x exp 

V{ZI±,—,ZN±) cc exp [ Y]iK- 

^      m_m+Vt |ya| 

J=1(m_-m+)ft2l~J+       J-'       Ä    ~, 
(12) 

In this expression ordering of z;±'s is immaterial. The wave function (12) falls off exponen- 
tially with the distance \zJ+ - Zj_|, under the binding condition 

ra_ > m+, Vi > 0;   ra_ < m+, VJ < 0. (13) 

Clearly, such a wave function characterizes a bound state of N excitons, as evident from 
the real exponential factors and an overall translation (the first factor), analogously to a 
delocalized Wannier excitonic complex [6]. 

The exponential factors in the bound state ]$2iv > can be revealed by the dependence 
of the intensity-intensity correlation function [3] G(2) on the separation r/ of two photon 
counters detecting the field in the structure: 

GW(V) = j < ^N\£+{z)E-{z)£+{z + r,)S-(z + r])\$2N > dz, (14) 

where the operator £~(z) = <f>+(z) + 6-{z) is the position-dependent negative-frequency 
field envelope. A laborious extension of the treatment in Ref. [3] to the two-band system 
yields G^(T]) as a linear combination of exponential factors of the form exp[-(c; + c±)|?71], 
exp[-(c+ + C_)|T/|] and exp[-(c,- + c+/2 + C_/2)|T?|], where c, = 2m_m+K7(m_ - m+)%2\ 
c± — 2\Va\m±/h , and a = + or - according to the Kerr nonlinearity sign. We have 
evaluated G^2\r]) for N = 2 (a biexciton) in a periodic structure consisting of Kerr-nonlinear 
GaAs layers alternating with linear dielectric layers, using the linear dispersion relation from 
Ref.[9] and a beam spot size p = 0.5 pm. The layer thicknesses are ai(GaAs) = 0.2338 (xm 
and a2 - 0.3044 fim. The refractive index of GaAs is nx = 3.60 and the refractive index 
n2 of linear dielectric varies from 1.00 to 3.574. GaAs has a nonlinear susceptibility xf = 
-2.5482 x 10~10 (cm/V)2 for light frequencies below the bandgap Eg = 2.1573 x 1015 s"1 [10]. 
The potentials Vi, V± and effective masses m± have been evaluated for the "conduction" and 
"valence" bands bordering the second lowest band gap, for which the binding condition in 
Eq.(12) holds (as opposed to the lowest band gap in this structure, for which this condition 
fails). Figure 1 clearly manifests the non-monotonic dependence of the multi-exponential fall- 

off of GN=2 with rj upon the refractive index ratio nxjn2. This dependence is a unique feature 
of the present solutions, whereas in quantum solitons traveling through Kerr-nonlinear fibers 
[3] the exponential fall-off of G^\TJ) depends only on the photon number TV. 

The bound-state energy eigenvalues are found from Eqs.(9) and (10) to have the following 
form, 

E2N = 2Nh(u0 ± uj2N), 

(15) 
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h2,K2 ,       m-m+V? \m-- m+\Vl, M2     n 

2|ra_ — m+|      2|m_ — ra+|n 6a 

where CJ0 = (w+ + w_)/2 is the center of the band gap and the upper (lower) sign is chosen 
according to that of the Kerr nonlinearity. As seen from Eq.(15), bound states are associated 
with discrete transmission lines at Ü2N = ^o ± u2N in the band gap, whose progression 
scales quadratically with half the photon number in an incident pulse N = irp2Tl2:v/Ahtt2N, 
T being the pulse duration and I2N the 2iV-photon component in the power density. We 
have assumed that the incident light field is in a quasi-monochromatic coherent state with 
band-gap frequency. Remarkably, the discreteness of the transmission spectrum will separate 
out different Fock states in the incident coherent state according to' their relative weights, 
i.e., the spectrum will reflect the photon statistics! This discreteness will be revealed only if 
\m_ -m+\Vl/fi2 is spectrally resolvable, otherwise the quasiclassical limit of gap solitons will 
prevail. The lowest line N = 1, which marks the minimal transmitted intensity associated 
with a single exciton, is the farthest removed from the appropriate band edge, and the lines 
are drawn nearer to the edge as N2 increases, as in the case of ordinary Wannier excitons [6]. 
However, whereas Wannier excitons have a Rydberg spectrum, with an infinite number of 
levels (which scale as 1/N2), the present bound spectrum is terminated at Nmax, for which 
Eq.(15) yields LO0±U2N - ^±, marking what can be dubbed the "ionization" threshold. Since 
the wave vector K of excitons is measured relative to 2&0, the effective mass approximation 
requires K < 2k0, so that we can let K = 0 in Eq.(15). 

The spectral features discussed above are shown in Fig.2 for the same structure as in 
Fig.l. Here too the dependence on n1/n2 is strongly non-monotonic. A rather restricted 
range of n1/n2 allows the resolution of levels corresponding to different N on a 0.1 GHz 
scale. Using a relative refractive index nxjn2 = 3.4221 and a pulse duration r = 1.0 ps, we 
have obtained the transmitted intensities I2N = 8.77 x lO"5, 3.07 x 10~3, 7.28 x 10"3, 8.99 
and 27.41 W/cm2, respectively, corresponding to the quantum numbers N = 1, 35, 83, 10° 
and 2.66 x 105, which is Nmax. For N > Nmax the spectrum (15) is replaced by continuous 
bands of energy eigenvalues, embedded in the allowed "conduction" and "valence" bands. 
These bands are analogous to the classical "out-gap" solutions obtained above a certain 

intensity threshold [11]. 
To sum up, we have accomplished the Bethe-ansatz solution for pairwise interacting 

quanta within the effective-mass regime of band-gap propagation in ID-periodic Kerr- 
nonlinear dielectric structures. Our theory predicts a new kind of collective excitations of 
the electromagnetic field dressed by such media, namely, optical multi-exciton (OME) com- 
plexes (or condensates), which are the quantum states associated with gap solitary waves. 
Their existence should be manifested (i) by the discrete spectrum of band-gap transmission, 
which reproduces the incident photon statistics, i.e., spectrally filters photon-number states 
on a MHz scale, and (ii) by the multi-exponential fall-off of intensity-intensity correlations 
on a 0.1 mm scale. Another distinct signature of OMEs is the strong non-monotonic de- 
pendence of the above properties on the periodic modulation of the refractive index in the 

structure. 
OMEs should have advantageous stability properties, provided both linear and nonlin- 

ear absorption are negligible. The stability properties of OMEs stem from their being the 
exact bound eigenstates of the nonlinear field Hamiltonian which accounts for single-photon 
and two-photon processes in the medium.   In non-absorbing media, OMEs should be sta- 
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ble against (a) spontaneous radiative recombination, which is the- main decay mechanism 
of electron-hole excitons in semiconductors [6]; (b)self-focusing (-defocusing) by the Kerr 
nonlinearity; (c)pulse (wavepacket) dispersion and diffraction in the dielectric structure; 
(d)quantum fluctuations in the electromagnetic field. On the other hand, in order to ensure 
the OME stability against thermal scattering due to thermal fluctuations in the dielectric 
function, one needs low temperatures. If the dielectric structure is Raman inactive, i.e., 
optical phonon scattering is absent, then thermal scattering does not affect the resolution of 
OME lines on a 0.1 GHz scale. The ability to resolve OME lines corresponding to much lower 
N would necessitate band-structure design aimed at increasing the effective mass difference 
|m_ — m+\ and the intraband nonlinear potentials |V±|. 
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Fig.   1 
FIG. 1. Dependence of the intensity correlation function G^2\rj) on the detector separation rj, 

for the photon number 2JV = 4. 

Fig.  2 
FIG. 2. Variation of the optical exciton frequency Q,2N with the relative refractive index ni/n2. 

The insert displays the variation of the band edges u+ and u_ with n1/n2 and u>o = (u>+ + UJ_)/2 

is the center of the band gap. 
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Appendix F: 
Superluminal Delays of Coherent Pulses in Non-Dissipative 

Media: A Universal Mechanism 

Y. Japha and G. Kurizki 
Department of Chemical Physics, The Weizmann Institute of Science. Rehovot, Israel, 

76100 

We identify the universal mechanism responsible for superluminal (faster- 
than-light) traversal times as well as narrowing of wavepackets transmitted 
through various non-dissipative media. This mechanism is shown to be pre- 
dominantly destructive interference between successive wavepacket compo- 
nents traversing all accessible causally-retarded paths. It strongly depends on 
wavepacket coherence and width, and can cause superluminal traversal not 
only in evanescent-wave "tunneling" but also in allowed propagation. 

42.50.Dv, 42.50.Ar, 42.25.Md 

I. INTRODUCTION 

As shown by a two-photon interference experiment [1], a photon that has tunneled as an 
evanescent wavepacket through a dielectric-mirror "barrier" appears to have been delayed 
significantly less than its "twin" photon that has traversed the same distance in vacuum. 
Such a delay has been interpreted as signifying "superluminal" (faster-than-light) barrier- 
traversal time. Similar "superluminal" time delay in tunneling through a dielectric mirror 
has now been measured in a classical two-pulse interference experiment [2]. The latter ex- 
periment has also revealed a remarkable feature, namely, that the temporal width of the 
transmitted wavepacket is strongly narrowed down. These intriguing time-domain measure- 
ments add new insight to that offered by earlier spectral-domain observations of superlumi- 
nal mean-phase delays, in frustrated total internal reflection [3] and waveguide transmission 
[4,5] of electromagnetic (EM) evanescent waves. Superluminal delays should also occur in 
tunneling of massive particles through potential barriers [6,7], which is analogous to EM 
evanescent-wavepacket transmission [8]. 

It is always possible to trace numerically the evanescent wavepacket evolution and com- 
pare its features with different definitions of barrier traversal times [6,7,9] (see below). Nev- 
ertheless, the mechanism of superluminal time delays is still obscure [1] and regarded as a 
"poorly resolved mystery" [9]. A commonly invoked notion is that this mechanism is spectral 
reshaping (filtering) of the transmitted wavepacket by dispersion. Indeed, such reshaping 
explains pulse narrowing and superluminal pulse traversal in absorbing [10] (or amplify- 
ing [11]) media, whose dispersion causes the faster spectral portion to be less absorbed 
(or more amplified) than the slower one. Analogous reshaping occurs in non-relativistic 
electron wavepackets which are dispersed in free space before hitting the barrier [9]. Yet 
why should spectral reshaping necessarily yield superluminal delays of EM pulses in non- 
absorbing structures, after propagating in (dispersionless) vacuum? Is there a common 
m,echanism for superluminal time delays and wavepacket narrowing, which applies to both 
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EM pulses in dielectric structures and relativistic massive particles in potential barriers 
[4]? How is causality compatible with superluminal transmission, particularly in the single- 
photon case [1]? 

We purport to show in this paper that the above questions can only be answered by 
a universal description of the temporal wavepacket transmission as interference between 
its causally-propagating consecutive components [12]. Our description reveals, for the first 
time, the key role of phase coherence in tunneling, by demonstrating its dependence on the 
coherence time (phase randomization) of the wavepacket. An important corrolary is that 
superluminal time delays can occur also in allowed propagation, namely, propagation which 
can only be described by real wavevectors (e.g., in Fabry-Perot structures) and not only in 
evanescent-wave tunneling, where complex wavevectors can be employed (e.g., in photonic 
band-gap structures). 

II. TRANSMISSION SPECTRUM AND MEAN TRAVERSAL TIME 

Our general framework assumes a classical EM pulse with field amplitude Tpin{x,t) that 
is normally incident from x < 0 onto a dielectric structure in 0 < x < L. The field amplitude 
iptr(x, t) transmitted through the structure is measured at x = L. It is related to the incident 
field amplitude at x = 0 [13] by convolution with the impulse response a(t) 

'     dr <J(T) ißin{0,t - T) 
u '!) 

where cr(t) is the Fourier transform of the spectral transmission coefficient a(u). The defi- 
nitions of traversal times vary according to the wavepacket feature that is monitored [6,7,9]. 
We shall pick two of them and attempt to explain why they are superluminal, i.e., shorter 
than their free-space counterparts (similar explanation of other traversal times is deferred 
to Ref. 14): (i) The mean traversal time is defined by 

is 

tmean  =   (t^tr)/ {&rAr) (2) 

where the overbar denotes integration over all times and the pointed brackets stand for an 
ensemble average (required for fluctuating fields). This traversal time coincides with the 
''center-of-gravity" arrival time [9] in the case where the propagation outside the barrier i 
not dispersive. We note that tmean can be defined for any shape of the incident pulse. 
The peak traversal time, tpeak, can be defined if |^r| is a smooth single-peaked function, 
as d\tbtr(t)\

2/dt\t=tpeak = 0. Only in the asymptotic limit of a spectrally narrow incident 
pulse, where the stationary phase approximation is valid, these two traversal times coincide 
with the so-called "phase time" [6,7] tphase = d<p/duj where <j>(u) is the phase of the spectral 
transmission function cr(u). 

III. SUPERLUMINAL TRAVERSAL TIMES IN LAYERED STRUCTURES 

We first: show how superluminal effects occur in the simple case of a single dielectric 
layer: the region 0 < x < L is filled with a (non-dispersive) medium of refractive index n2 
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and embedded in an infinite medium of refractive index ri\.   The transmission coefficient 
<T(U) can be expanded in a series 

oo 

a(u) = ^c3e^ (3) 
j=o 

where each term represents a causal path, corresponding to 2j boundary reflections: j 
round trips through L followed by transmission (Fig. 1, inset). Here r;- = (2j -f l)n2£/c is 
the jth path traversal time and Cj = (1 — \2)X2j are determined by the reflection amplitudes 
A = (ni — ri2)l(n\ -f n2) at the boundaries x = 0 and x = L. Equation (3) also describes the 
transmission of a Fabry-Perot etalon (two mirrors separated by a dielectric medium) when A 
is replaced by the (complex) reflection coefficient of a mirror [14]. By Fourier-transforming 
the expansion (3) we obtain the impulse response 

00 

o-(0 = Eci*(*-ri) (4) 
3=0 

consisting of successive impulses with causal propagation times and decreasing amplitudes. 
Suppose that the incident pulse (/>;n(0, t) is of the form ipin(0, i) — g(t) exp[—i£(t)] where 

g(t) is a normalized Gaussian of temporal width A* and the phase £(t) corresponds to 
an oscillation with frequency ü and phase-coherence time rc such that (e'^e-'^')) = 
eiQ(t-t')e-\t-t'\/TC^ Qur maj.n j;00i w\\\ bg the following autocorrelation function 

COS[U;(TJ — Tfc)] exp 

T(T: - Tk)  = M1>in(i - T3)^in(t ~ Tk))   = 

(r^-Tfc)2       |TJ — xjbl 

8A? 

T(TJ — Tfc) consists of the cosine of the relative phase between the paths i and j, weighted 
by an exponential term, measuring the amount of overlap and phase correlation between 
wavepackets traversing the two paths. 

The time-integrated and ensemble-averaged transmitted intensity ItT — (iptrifttr) is ex- 
pressed in term of this autocorrelation function as 

Itr = J2 C) + H CjCkT{Tj - Tfc) (6) 
3 rtk 

If the pulse is either very narrow (A< <C T0) or incoherent (rc <C r0) then the wavepackets 
traveling along different paths Tj ^ Tfc are no longer correlated, due to phase randomization or 
lack of overlap. The second (coherent) term in (6) is then washed out, and the transmission 
becomes frequency independent. In the opposite limit, when the incident pulse is wide, 
smooth and coherent (transform-limited), such that A<,TC <C T0), strong interference takes 
place between the different overlapping wavepackets and the second term plays a major 
role. When this term is large and negative, this means that the interference is strong and 
predominantly destructive, due to the negativity of the T(TJ — Tfc) terms with the largest 
CjCfc weights. In the single-layer example, the transmission of a wide, transform-limited pulse 
becomes minimal when <D(TJ+1—TJ) is an odd multiple of T, yielding 7ir = [2n1n2/(n^+n2)]2. 
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The mean traversal time (Eq. (2)) through such a structure is 

tmean =  ~j- < £ C)T3  +  2  £ C3C^Ji + Tk)^(Tj ~ Tk) \ (7) 
v. J i^k J 

The first (diagonal) term in (7), which is predominant for an incoherent or temporally 
narrow incident pulse, is always larger than the shortest causal arrival time r0 = n2L/c, as 
expected for r2 weighted with positive probabilities (c2/£jC

2). For a wide, coherent pulse 
with carrier frequency ü such that the transmitted intensity (Eq. (6)) becomes minimal due 
to strong, predominantly destructive interference between the paths, the second (coherent) 
term in Eq. (7) can become sufficiently negative to cause tmean < r0. In the present example 
the minimal value of tmean is p^n2/^2 + n2

2)]L/c, which is less than L/c if n2 = 1, i.e., 
superluminal, although we deal with allowed propagation! 

The width of the transmitted pulse is given by (At)2 = I~l{(t - tmean)2^Tibtr).  It can 
be shown that 

(^ = A' + if £ cMr3 + rkfY(Tj - rk) - t2mean (8) 
*ltT j,k 

In the limit of total incoherence, we find that (At)2 is just the sum of the squared widths 
of the incident wavepacket A? and the impulse response J2j C

2
T

2
 - (£V c2^)2 where c2 = 

cj/ Ej c2. In the opposite limit of strong interference between coherent and wide wavepackets 
r("j - rk) ~ eiw^-T*). It then follows from Eqs. (5)-(7) that Eq. (8) becomes 

i^)2 = A? - ~ [ln(4M)l (9) 

If ü lies in a dip of the spectral transmission curve Itr(u) then d2[lnItT}/du2 > 0 and the 
pulse will be narrowed. The temporal narrowing effect will be most salient when At ~ 

KP [ln(^(w))]i provided At is large enough to allow overlap of successive wavepackets. This 
effect is seen to be sensitive to coherence: the phase incoherence r"1, which contributes only 
to the total spectral width of i)in and iptr (due to the fluctuating phase f (i)), exponentially 
diminishing the narrowing in (8). 

Figure 1 allows more insight into the case of wide and coherent ißin, for which ^tT(L,t) 
(thick curve) consists of overlapping, destructively interfering Gaussians (thin curves). Am- 
plitude suppression of the first transmitted wavepacket \cQibm(t - r0)| by the next one is 
stronger throughout its rear half than throughout its forward half, since the envelopes 
\cji>in(t - Tj)\ with j > 1 are maximal at t > r0. Consequently, the forward tail, which 
has extended through the structure already at t < 0, becomes the peak of iptT, correspond- 
ing to superluminal tpeak and tmean. Destruction of the rear half of ij;in by interference also 
makes the transmitted pulse narrower, because it consists mostly of the forward tail of ipin. 
By comparison, an incoherent (fluctuating) input Gaussian of the same envelope, results in 
a broad, intense, (\iptr\2) with subluminal tveak. 

The foregoing results render the essence of superluminal effects in the transmission 
through any layered structure, since the impulse response is then a discrete sum of 8- 
functions as in (4). Consider specifically the structure used in Refs. 1 and 2, which contains 
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N periods, each consisting of two layers with refractive indices n\ and n2, and thicknesses 
£i, £2. We have obtained the transmission coefficient ajsr(uj) of N such periods by a recurrence 
relation from the single-period transmission and reflection coefficients. Its Fourier transform 
can be expanded, as seen from Fig. 2 (inset), in the form 

oo 

Mt)= £ cj^-foi + r*)] (io) 
h,h=o 

Here each coefficient C^]2 is the sum of the amplitudes of all possible paths traversing the 
nx and n2 layers TV + 2jx and N + 2j2 times, respectively, with causal delay-times r^ = 
(N + 2ji)rii£i/2c (i - 1,2). Equations (6)-(8) and the foregoing discussion of the single-layer 

(Fig. 1) fully apply to the multi-layered barrier, on substituting Cj -+ Cjx]2 and r,- —> TJ1+TJ2. 

We find that (Fig. 2) an evanescent wave is a sum of propagating transmitted waves whose 
leading terms interfere destructively at band gap frequencies. Correspondingly, there is 
constructive interference in the leading reflected waves (the Bragg reflection condition). 

IV. SUPERLUMINAL TRANSMISSION TIMES IN DISPERSIVE MEDIA 

The foregoing results can be extended to non-dissipative dispersive media which are 
characterized by a continuous impulse response, e.g., a dielectric medium with continuously 
varying refractive index or an optical waveguide [4,9]. The sums over paths J2j,k CjCkT(T3-n) 
in Eqs. (6)-(8) should be replaced by the integrals / dr J ir/cr(r)cr(r')r(r - r'). Reduced in- 
tensity, superluminal time-delay and temporal narrowing of pulses transmitted through such 
media follow, as in layered structures, from destructive interference between components of 
i)iT at different delay times r ^ r', corresponding to predominantly negative contributions 
of cr(r)cr(r/)r(T — r'). As an example, consider an infinite waveguide, with cutoff frequency 
uc. Its impulse response for transmission from x = 0 to x — L has been found by us to have 

the causal form [15] 

a(t) = 8{t - Ljc) - uc(L/c) [Ji(wca)/s] 8{t - L/c) (11) 

where J\ is the first-order Bessel function, 8 is the Heaviside step function and s — 

Jt2 - {L/c)2. If ipin is coherent and temporally wide (At, rc < L/c) we can divide the 
integrals over <T(T)(T(T')T(T — r') into intervals that exhibit strong cancelations in the ex- 
pressions for tmean, Itr and (At)2 (the continuous limits of Eqs. (6),(7) and (8), respectively) 
provided that ü < uic. The superluminal delays observed in waveguide transmission below 
cutoff [4] are obtainable from this description. It is important that massive relativistic par- 
ticles in potential barriers obeying the Klein-Gordon equation fit the same description, since 
their energy-momentum dispersion is the same as in light in a waveguide [8]! 

V. CAUSALITY AND SIGNAL TRANSMISSION 

Had the peak of the transmitted wavepacket carried any new information, its arrival 
after a superluminal time-delay tpeak would have violated causality. However, for an analytic 
input i>in in Eq. (1) the interfering forward tails of tpin(t — Tj) which are present at x = L at 
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t < 0, already contain all information on the rest of the pulse to follow. New information can 
only be transmitted by a non analytic (abrupt) disturbance of ihin, which would be causally 
delayed. This can be experimentally demonstrated by switching off the incident Gaussian 
at its peak (t = 0) much faster than ü~l (for Q in the microwave range, this is achievable 
by a sub-picosecond optical pulse that drastically changes the transmissivity of a dielectric 
medium). Such abrupt switching-off corresponds to ^m{x = 0,i) = 9(-t)g(t) where 6{t) is 
the Heaviside step function [16]. The transmission of this 0in through any layered structure, 
e.g.. a single-layer (Eq. (4)) yields by Eq. (1) 

Mt) = T,ci0(T3-t)g{t-Tj) (12) 
j 

The interference is unaffected by this switching-off at t < r0. Hence, the forward half of i>tT 

looks the same as for an unchopped Gaussian ipin and may exhibit a superluminal tpeak. The 
true character of i)m is revealed only at t = r0 = L/c, when the first transmitted Gaussian, 
i>in(t - T0), vanishes, causing tptr (thick curve in Fig. 3) to drop below \ci4>in(t - Ti)\. This 
demonstrates a fundamental point: The step-like decrease at successive Tj, transmits the 
switching-off information in a causal fashion, whereas superluminal features, such as tpeak, 
carry no information. 

VI. PHOTON DETECTION AND SUPERLUMINAL EFFECTS 

The discussion thus far has been classical, but it can easily be rendered in quantal terms, 
appropriate for two-photon interference [1] or one-photon detection. We must replace ißin by 

a field operator ^\x,t) = £K aKel(KX-^K^ where aK are the annihilation operators of the 
modes « of the free field. In the single-photon case the incident field state is |1) = £« 0«<410) 
where gK is a Gaussian function of U(K) centered around ü and |0) is the vacuum state. 
In this case T(T: - rk) in Eq. (5) must be evaluated using (l|^-)(a;, ^^(^(a;7, *')|1) = 
V*n{x,t)4>m(x',t') where ipxn is the classical wavepacket. Equations (6)-(8) are then valid, if 
Itr is interpreted as the detection rate or probability of a transmitted photon. A transmitted 
photon is likely to be detected at "superluminal" times when its Itr is peaked at the forward 
tail of the classical |^in(I,i)|2, which was already present at the detector even at t < 0. 
By contrast, a similar photon that has propagated the same distance through vacuum is 
characterized by the peak of \ipin(L, t)\2, which arrives latter (at t = L/c). 

VII. CONCLUSIONS 

Our theory has demonstrated, for the first time, that the universal mechanism of pre- 
dominantly destructive interference between accessible causal paths [12] is responsible for 
transmission attenuation, superluminal delay times and wavepacket narrowing. Two other 
characteristics of evanescent waves ,namely, exponential attenuation and traversal-length 
independence of tmean or tpeah for opaque barriers [2] can also be explained in terms of this 
universal mechanism [15]. This theory overcomes the limitations of previous approaches, 
since it applies to arbitrary pulse shapes, widths and coherence times, and explicitly re- 
veals the causal nature of their transmission.   The understanding provided by this theory 
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may open new perspectives,in the design of the velocity, intensity and shape of transmitted 
pulses, by manipulating the phase delays along the accessible paths in the medium. 

This work has been supported by the Minerva Foundation, Germany and USARDSG. 
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FIG. 1. A Gaussian pulse transmission through an empty layer (n2 = 1) between two dielectric 
slabs with nT = 4. Inset - Successively transmitted terms corresponding to 2.7-fold reflections in 
the empty layer. Thin curves - successively transmitted Gaussians numbered by j = 0,1, 2,... with 
phase delays üTJ = (2j + l)ir. Dotted curve: their coherent sum iptr for narrow ipin (A, = 0.03 L/c). 
Thick curve: ^tT for a wide i>in (At = l.hL/c) exhibits tmean « tpeak < L/c (arrow). Dashed curve: 
the square root of the ensemble-averaged intensity when rc = 0.5i/c. 
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FIG. 2. Transmission through 5 double-layer periods of length 21 (ni = 1.5, «2 = !)•  Inset- 

successively transmitted terms due to interlayer reflections. Impulse response spikes are shown at 
t - Tji + Tj2. Solid curve: transmitted Gaussian envelope with carrier frequency ü at the center of 
the band-gap and At = l.bL/c exhibits tveak ~ 0.6L/c. 
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FIG. 3. Same as Fig. 1 for an incident Gaussian pulse that is chopped at t = 0 (Eq. (12)). 
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